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Abstract

A central research goal in information systems science is to achieve a close alignment
between business processes, structures of organizations, and the functionality offered by
enterprise information systems (EISs), which are used to support the work of organiza-
tions. Traditionally, there is a methodical gap between describing organizational incidents
and software functionality, because organizations and software systems are understood
and constructed with different terminology and on different levels of abstractions, typi-
cally also by differently educated groups of people.

In enterprise models (EMs), dedicated modeling language elements are used to express
knowledge about processes in organizations, e. g., about who is responsible for performing
actions, what resources are involved, and what strategic goals are intended to be realized
by organizational means. The work at hand shows, how EISs can be created based on this
knowledge, which serve as supporting software for performing these tasks.

Software development traditionally has to face a distinction between people who work
with software, and people who create software. With the use of EMs, a chance opens up
to closer involve the users of software systems into the process of developing and config-
uring the software. Building software from enterprise models is desirable, because once
a dedicated relationship between enterprise models and software functionality has been
established by a development method, involved users and responsible stakeholders can
adapt the software according to their business needs, without having to deal with program-
ming or technical details. This increases efficiency both in developing and operating the
software, because software functionality is derived from requirements implicitly stated in
EMs. Such a development procedure also promises to more efficiently adapt EIS to dy-
namic changes in organizations and their environment. Trust in the developed software
system is also increased by involving users and responsible stakeholders into specifying
the resulting software functionality.

The following research work elaborates a software development method to create EISs
from EMs. The method is designed as a generic framework to work with any enterprise
modeling language, and to generate software for any target system platforms, after ap-
propriate configuration. Fundamental challenges in methodically transforming conceptual
models to implementation artifacts, are faced by involving auxiliary models into the soft-
ware creation process, and splitting up the transformation procedure into multiple ded-
icated phases. Using this approach, the abstraction gap between conceptual enterprise
models and technical implementation artifacts gets systematically bridged by introduced
methodical concepts, in order to perform an ontological turn from the bird’s-eye-view de-
scription perspective of enterprise models, to an internal system perspective describing
technical details of a software system.

The elaborated method provides means for efficiently guiding modelers and software de-
velopers through the software engineering process. It can be configured at multiple points,
to choose the degree of automation on a continuum between a manually supervised de-
velopment process with methodically scheduled manual development steps, and a zero-
coding 100% code generation approach.



To clarify the theoretically introduced concepts, prototypical implementation examples are
included in the present work. They demonstrate how to configure the method with model-
transformations, validity checks, and domain-specific modeling languages, and serve as
initial example cases for enterprise model driven software development using the Software
Engineering with Enterprise Models (SEEM) method.



Zusammenfassung auf Deutsch

Ein zentrales Forschungsziel der Wirtschaftsinformatik ist es, einen Abgleich zwischen
den Geschiftsprozessen und Strukturen von Organisationen, und der Funktionalitit von
Unternehmensinformationssystemen (Enterprise Information Systems, EIS), zu erreichen,
mit denen die Arbeit von Organisationen unterstiitzt wird. Traditionell besteht eine metho-
dische Kluft zwischen der Beschreibung organisationaler Gegebenheiten und der Funktio-
nalitdt von Software, denn Organisationen und Softwaresysteme werden mit verschiedener
Terminologie und auf verschiedenen Abstraktionsebenen beschrieben und konstruiert, und
dies typischerweise von verschieden ausgebildeten Personengruppen.

In Unternehmensmodellen werden dedizierte Sprachmittel genutzt, um Wissen iiber Pro-
zesse in Organisationen zu modellieren, zum Beispiel tiber handelnde und verantwortliche
Akteure, eingesetzte Ressourcen, oder strategische Ziele, die durch organisatorische Mit-
tel erreicht werden sollen. Die vorliegende Arbeit zeigt, wie basierend auf diesem Wissen
EIS entwickelt werden konnen, die als unterstiitzende Software zur Ausfithrung dieser
Aufgaben dienen.

Softwareentwicklung sieht sich traditionell mit einer Trennung zwischen Personen, die mit
Software arbeiten, und Personen, die Software erstellen, konfrontiert. Unter Nutzung von
Unternehmensmodellen er6ffnet sich eine Chance, Benutzer enger in den Prozess der Ent-
wicklung und Konfiguration von Software einzubinden. Es ist wiinschenswert, Unterneh-
mensmodelle zur Softwareentwicklung methodisch heranzuziehen, denn sobald eine nach-
vollziehbare Beziehung zwischen Unternehmensmodellen und Software-Funktionalitit mit
Hilfe einer Entwicklungsmethode etabliert ist, konnen beteiligte Nutzer die Software selbst
entsprechend ihrer Bediirfnisse mittels Unternehmensmodellierung anpassen, ohne mit
Programmierung oder technischen Details umgehen zu miissen. Das erhoht die Effizi-
enz sowohl bei der Entwicklung als auch Anwendung der Software, denn die Software-
Funktionalitédt wird aus Anforderungen abgeleitet, die implizit in Unternehmensmodellen
erfasst sind. Eine solche Entwicklungsmethode verspricht auBlerdem, EIS an dynamische
Verdnderungen in Organisationen und deren Umgebung effizienter und kostengiinstiger
anpassen zu konnen. AuBlerdem wird das Vertrauen in die entwickelte Software wird durch
Einbeziehung von Nutzern in die Anforderungsspezifikaton gestidrkt, wenn Anwender und
Leitungsverantwortliche in der Lage sind, die Funktionalitit der Software in eigener Ver-
antwortung zu gestalten.

Die nachfolgend dargestellten Forschungen erarbeiten eine Software-Entwicklungsmetho-
de zur Erstellung von EIS aus Unternehmensmodellen. Die Methode ist als generischer
Rahmen entworfen und kann prinzipiell mit jeder Unternehmensmodellierungssprache
verwendet werden, und fiir jede Zielarchitektur Software erstellen, nach entsprechender
Konfiguration. Grundsitzliche Herausforderungen, die sich beim methodischen Ubergang
von konzeptionellen Modellen zu Implementierungsartefakten stellen, werden durch die
Einfiihrung von erginzenden Zusatzmodellen in den Software-Entwicklungsprozess, so-
wie die Aufteilung des Transformationsverfahrens in mehrere dedizierte Phasen, ange-
gangen. Mit diesem Ansatz wird die Abstraktionsliicke zwischen konzeptionellen Unter-
nehmensmodellen und Implementierungsartefakten durch methodische Konzepte syste-
matisch tiberbriickt, um die Beschreibungsperspektive von der Vogelperspektive der Un-



ternehmensmodellierung hin zur internen Systemsicht auf Details eines Softwaresystems
ontologisch zu drehen.

Die erarbeitete Methode erlaubt es, Software-Architekten und -Entwickler effizient durch
den Entwicklungsprozess zu leiten. Sie kann an verschiedenen Stellen konfiguriert werden,
um den Automationsgrad auf einem Kontinuum zwischen einem manuell beaufsichtig-
ten Entwicklungsprozess mit methodisch vorgesehenen manuellen Entwicklungsschritten,
oder einem “zero-coding” Entwicklungsansatz mit 100% Code-Generierung, auszuwéh-
len.

Zur Veranschaulichung der theoretisch eingefiihrten Konzepte enthilt die vorliegende Ar-

beit prototypische Implementierungsbeispiele. Sie demonstrieren die Konfiguration der

Methode mit Modelltransformationen, Modellvalidierungen und doménenspezifischen Mo-
dellierungssprachen, und dienen als erste Anwendungsbeispiele fiir Unternehmensmodell-

getriebenen Softwareentwicklung mit der Software Engineering with Enterprise Models

(SEEM) Methode.
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Part 1
Motivation

I've been doing research for years
I've been practicing my ass off
Alanis Morissette, “Eight Easy Steps” from the album “So-Called Chaos”, 2004

1 Aligning organizational goals and technological infrastructure with
model-driven software development

1.1 The vision: software made in a way everyone can understand

An organization is a system of people with individual and shared goals, who perform ac-
tions with commonly shared resources, in an environment shaped by mutually established
rules and traditions.

Taking part in an organization, as well as managing and steering the organization, requires
the involved actors to have knowledge about tasks, responsibilities, resources and rules
they deal with as part of their contribution to the overall organization. Everybody involved
in an organization needs an appropriate degree of information about themselves being em-
bedded in the organizational environment they act in. They also need to have knowledge
about tasks and responsibilities of other participants in the organization, in order to effi-
ciently interact with them. Every actor in an organization has a notion of the action system
he or she is embedded in, as a very basic fundamental prerequisite to successfully be a part
of the organization. An action system is an organization with its tasks, actors, resources
and rules. Human actors take part in this organizational system, as well as automatic
components and immaterial rules and goals.

Knowledge about an organization typically gets communicated in terms of processes per-
formed by the organization, including information about the human actors carrying out
individual tasks and actions, machinery and software that are required to perform these
actions, resources that are involved, and rules and regulations that are obeyed when per-
forming these action steps. Descriptions of these kinds have traditionally been commu-
nicated by diagram drawings or in text documents. They make use of conceptualizations
around organizational roles, responsibilities, rules, tasks and resources. Economics and
management sciences have formed to professionally handle these terms, and to use them
for descriptive and prescriptive reflections on organizations. From these research areas,
methods and theories have evolved about how to successfully structure organizations, for-
mulate strategic goals, and set up efficient processes. The terminology behind this research
thus provides an elaborated framework of concepts to express and handle knowledge about
organizational structure and behavior.
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Members of an organization use these commonly understood concepts, to create descrip-
tions of organizational incidents and circumstances. They can do this with the help of
enterprise modeling languages (EMLs), which typically provide graphical means for ex-
pressing knowledge about organizations with concepts originating from the professional
terminology. As a result, a set of interrelated enterprise models is created. Given suitable
methodical support, this set of models can automatically be consulted to configure and
create software, which provides automatic support for carrying out the modeled processes
in the organization.

If such a method can be provided, which allows to derive software from the knowledge in
enterprise models, a new level of methodical software development can be reached, allow-
ing everybody to configure his or her own EISs without programming, just by specifying
desired tasks through visual domain-specific models, with a set of human-understandable,
domain-specific concepts.

The upcoming research work suggests a software development method, which allows for
exploiting the knowledge contained in enterprise models, to develop EISs for supporting
organizational tasks and modeled processes of the organization. Depending on its con-
figuration, the method can either fully automatically support the creation of EISs from
enterprise models, or can provide systematic guidance in performing manual development
steps throughout the development process. The research results achieved will contribute
to a deeper understanding of how prospective users of software systems can be involved
in software engineering, and are one step forward towards creating software in a way ev-
eryone can understand [KroO7].

1.2 Describing organizations with enterprise models

Business enterprises and other kinds of organizations are socio-technical systems, which
are subject to various external and internal influences. A socio-technical system consists
of human actors and technical constituents. The technical constituents, e. g., informa-
tion systems, form the infrastructure on which the collaborative actions are performed by
humans. The human actors typically do not only pursue the organization’s goals, but ad-
ditionally have individual goals and responsibilities, which they try to accomplish. Due to
a multitude of dependencies among human actors and information systems, the qualitative
complexity of an organization increases exponentially in relation to its quantitative scale.
This means, while an organization develops and matures, it continuously becomes more
difficult to oversee the relation between its intended goals on the one hand, and the actual
implementation of operations that are performed to achieve these goals on the other hand.

To align the structure and behavior of a continuously maturing organization with its strate-
gic goals, cognitive support is required to gain insight into the current situation of an
organization, as well as into possible future constellations. Due to the high degree of in-
terdependency and meshed complexity, such means cannot be provided by generic instru-
ments of communication, e. g., by using linear natural language. Instead, an instrument
to cope with these tasks is required to provide the required semantic expressiveness for
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knowledge explication. Such support is available through the use of enterprise models
(EMs) [Fra94, Gro04, Rol00].

Enterprise models contain knowledge about the business processes performed in an orga-
nization, the actors and resources involved, organizational and operational responsibilities,
and other aspects of how an enterprise works. When sensefully put together, these different
aspects, also called perspectives or dimensions of an organization, provide a comprehen-
sive multi-perspective view on an organization. This entire view cannot be achieved by a
single type of model with a single modeling language, because the interwoven aspects of
structure, dynamics, rules, etc., are too complex to be expressed without clean methodi-
cal distinction from other perspectives. As a consequence, multiple kinds of models are
used to capture knowledge about the interrelated different perspective, and most enterprise
modeling methods and enterprise architecture (EA) approaches suggest the use of multi-
ple interrelated modeling languages to form a whole set of EMs. This general approach
dates back to first enterprise modeling and EA methods, beginning with the ZACHMAN
FRAMEWORK [Zac87], it characterizes the TOGAF standard [Gro04], and shapes prod-
ucts like the ARIS TOOLSET [Sch02b], the newly standardized ARCHIMATE [Lan(09], and
MULTI-PERSPECTIVE ENTERPRISE MODELING (MEMO) [Fral2].

Advanced enterprise modeling methods use interrelated multiple perspectives by incorpo-
rating multiple diagram types, which are internally related on the level of language design
to allow sharing of identical concepts in multiple perspectives. This is vital to ensure
semantic integrity among multiple perspectives, since referenced concepts from other per-
spectives are ensured to be further explicated in their own designated perspective. By
incorporating knowledge from multiple perspectives of an enterprise, EMs contain a set of
relevant facts not only about the organization as a socio-technical action system itself, but
also about the desired functionality of software used for supporting the enterprise.

EMs are typically created and maintained by people who are familiar with the organiza-
tion in focus, e. g., by employees or members of the organization, managers, or by external
analysts, who have previously examined parts of the organization. These involved people,
each one representing one view on specific requirements expressed in EMs, are the stake-
holders in the modeling process.

Enterprise models are typically composed of graphical symbols on a visual diagram plane.
To achieve an appropriate level of abstraction and understandability, enterprise modeling
languages (EMLs) can be designed as domain-specific languages, which provide desig-
nated language concepts that facilitate modeling strategic goals, organizational structure,
and operational behavior of organizations. The graphical symbols and the terminology
that make up an EML are intended to allow involved stakeholders to gain a sufficient un-
derstanding of their area of interest represented in the enterprise models. This is especially
relevant for those stakeholders with no formal sciences background, which is usually the
majority of people in an organization. For this reason, it is recommended to use visual
symbols that show well-known metaphors, and to label the model element types using a
familiar terminology from the organization’s environment.

EMs, as understood in the context of this work, are used for describing parts of organiza-
tions on an abstract level. Such descriptions cover relevant goals and missions of an orga-
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nization, as well as its structural composition and processes that are performed to achieve
the goals [SS05, Fral2]. Typically, an organization is not modeled entirely, but only those
aspects are documented via models, which are subject to further planning, analysis, or
software development. The term “enterprise” is understood as a synonym for “organiza-
tion” in this work, there is no additional semantics attached to “enterprise” in comparison
to “organization”. Using the word “enterprise” neither implies any relationship to a com-
mercially oriented organization, nor does it state anything about the size and complexity
of the organization in question.

Some notions of enterprise models also include technical software models into the set of
different perspectives, arguing that supporting software components are part of an enter-
prise in a way comparable to resources, processes, etc., and, as a consequence, they should
be modeled as part of the set of enterprise models using traditional software system mod-
eling techniques, such as the Unified Modeling Language (UML) [BJR99]. From such
a point of view, a set of enterprise models consists of organization models, as well as of
technical system models, which are both subsumed under the notion of enterprise mod-
els. The term “enterprise model”, as used throughout this work, however, more closely
denotes the notion of organization models, and does not cover technical system models.
Instead, from the point of view of the work at hand, those software systems supporting
an organization’s work should not be modeled using traditional modeling techniques, they
should rather be described in terms of implementation decisions explicitly related to the
conceptual elements of the enterprise models, which is one of the main methodical pro-
posals introduced by this work, the Software Engineering with Enterprise Models (SEEM)
method.

To edit EMs, software tools are required, which make the contents of EMs accessible to
users. While for pure documentation and communication purposes, a drawing editor would
be sufficient, the full range of methodical value of enterprise modeling can only be gained,
if dedicated model editors are used, which internally represent the formal semantics of
the models, not only their graphical appearance in the diagram [GF10]. Once internal
representations of the formal model semantics are available, i. e., the elements of enterprise
models and their relationships are stored as a data structure in an object-graph, and not
only as arbitrary graphical objects on a diagram plane, enterprise models are accessible to
queries, analyses, and all kinds of automatic processing. This opportunity spans a bridge
from a human-understandable description of an organization, to a systematic interpretation
of this description for interfacing with technology.

Creating enterprise models with domain-specific languages fosters the separation of con-
cerns between on the one hand incorporating general principles of the modeled domain on
the language level, and on the other hand creating model instances that accurately describe
a subject’s perceived reality about real world constellations of concrete enterprises. The
tasks of creating and editing model instances can be best performed by the stakeholders
who are themselves involved in the organization. The upstream task of language design,
however, is a genuine academic challenge to be carried out carefully with support of sci-
entific research. This separation of concerns makes the use of enterprise modeling meth-
ods efficient and attractive for practical use. Modelers can rely on previously elaborated
domain-specific languages, so the responsibility for ensuring semantic integrity and under-
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standability among different groups of stakeholders is shifted to the process of language
creation, making the use of individual models more efficient and less prone to errors.When
models of enterprises and organizations are to applied with methodical support in a way
understandable for all stakeholders, the use of elaborate domain-specific enterprise mod-
eling languages thus is a first choice approach.

The range of possible uses of enterprise models is broad, once a coherent set of mod-
els from interrelated perspectives is available and maintained using domain-specific lan-
guages. Besides serving as means for communication, enterprise models can be utilized
to develop information systems, which supply the described organization’s tasks, e. g.,
by deriving executable workflow descriptions from business process models [ODvdA 109,
RMO06]. They can furthermore be used reflectively as tools to access information about
operative systems and organizational entities represented in the models [FS09]. When
applied in such a manner, enterprise models are no longer used for capturing knowledge
from different perspectives to make it commonly accessible for diverse stakeholders, but
they now serve as a repository of knowledge from which different stakeholders with their
individual concerns can extract modeled facts and relate operational information to them.

1.3 Enterprise information systems for supporting organizational tasks

Enterprise information systems (EISs) are software systems for supporting the work of or-
ganizations, more precisely, supporting people in an organization to carry our their work-
ing tasks, in interaction with other people, and with automatic systems. EISs provide
multiple variants of functionality, one of which is to guide human users through a se-
quence of working steps in regularly repeated business processes. In order to achieve this,
the system must know about the user’s role in the organization, the business processes he
or she is involved in, and the resources that are used when performing individual steps in
the processes. This also incorporates knowledge about collaboration relationships among
multiple actors in commonly performed business processes, the order in which individual
working steps are performed, and conditions under which parts of a business process are
performed or skipped [Wes07]. Users access an EIS via front-end applications, typically
in a distributed and shared environment. These front-end applications inform the user
about which processes are to be performed, and which process-steps are to be taken next.
E. g., a front-end application may display a “to-do” list to the user, indicating the steps
of action that the user is expected to work on next. Once a working step is performed,
the user notifies the system about completing the task, and in turn gets informed about
possible subsequent working steps. If decisions are required to determine the following
working steps, which cannot automatically be taken, the user is asked by the EIS to enter
the appropriate decision interactively.

Besides guiding through sequences of working steps, an EIS typically contains support
functionality for performing the individual working steps directly with the help of the EIS
front-end application, or integrated applications invoked by the EIS. One typical example
of such functionality is to provide access to information resources that are shared among
multiple members of an organization [FCO8]. To access these resources, an EIS can inte-
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grate viewers and editors for information objects, and can handle authenticated access to
these information objects. When invoking external applications as part of the supportive
work coordination, a vast amount of integration options exist with respect to achieving data
integration, functional integration, process integration, propagation of security rights, and
several other organizational and technological aspects of enterprise application integration
[RMBO1, Ver96].

A third building block of an EIS’s functionality is the coordination of automatic process-
ing steps where possible and desired. Automatic processing might either be performed
by including automatic functionality directly in the EIS application, or by invoking exter-
nal software components. The EIS bridges between human working steps and automatic
processing, passing human input to automatic components, and re-injecting the results
of automatic processing into the user’s workflow. Automatic processing may influence,
which further working steps are to be performed, or may result in information objects,
which are subject to further handling by human actors or software components.

In addition to these core features, EISs may offer organization-specific features which are
uniquely linked to the specific goals and competitive advantages of an organization. See
Sect. 4 for a detailed analysis of requirements towards an EIS.

Traditional business conceptualizations regard EISs as a kind of information technology
(IT) resources that are involved when performing specific processes [FC08]. However,
this conceptualization does not allow for understanding EISs as a kind of formal represen-
tation of parts of the organization itself. Since EISs are actively acting automatic entities
inside the organization, these entities necessarily encapsulate formal knowledge about the
organizational action system and the process contexts they are applied in. In this sense,
EISs are more than production resources to foster efficient process execution. They both
reflect and shape the processes they are involved in. As linguistic constructions, they are
derived from human perceptions of the world [Fralld], which in turn have repercussions
on the perceived reality once they are available as implemented technical artifacts.

As a consequence, in descriptions of an organization’s action system, there is an internal
connection between the action system described, and EISs that occur as part of these de-
scriptions. Whenever an EIS is incorporated in the description of an organization’s action
system, it can be inherently assumed that the EIS contains formal internal descriptions of
selected aspects of the action system, too, since otherwise the software could not success-
fully contribute to the processes it is intended to support.

EISs necessarily need to represent knowledge about the processes in an organization, and
about how human actors and automatic components interact. In this respect, EISs are
software representations of organizational structure and processes, like EMs are human
readable representations of the same objects of interest. This connection makes it attractive
to reason about a software development approach which interconnects both EMs and EISs,
as it is carried out in this work, and justifies the assumption that it is possible to derive
formal software system descriptions from organization models using a defined engineering
method.

The development method to be elaborated has the purpose to bridge the business conceptu-
alizations, as they are provided through enterprise models, to a formal description of a sys-
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tem’s inner perspective given in technical software terms. Both kinds of descriptions are
formulated in diverse languages and terminologies, one using business-related concepts
to describe an action system from an outer organizational perspective, the other focusing
on technical means for structuring a software system from its inner technical perspective.
Still, on the description level, both modes represent alternative ways to express knowledge
about those aspects, which are supported by EISs. The double-nature’ of both description
approaches, with their divergent terminology and concepts, is depicted in Fig. 1.

Action System (Organization)

Goals Tasks Actors Roles Responsibilities

Activities Procedures Indicators Regulations Control

Information System (Software)

Function Component Service System Architecture Data Program

Class Object Software  Hardware Interface Source Code

Figure 1: Action system and information system as interwoven human-task-technology
system (according to ULRICH FRANK)

The software systems integrated by an EIS may be components of different kinds, e. g.,
back-end accounting systems, bookings systems or database management applications.
Individual front-end workplace applications may also be integrated, such as office appli-
cations to present and edit information in documents. Even machine control software such
as software for computation independent model (CIM) [Ver96, Wal92] may be subject to
integration by a comprehensive EIS in a production industry context.

By integrating software components in a way specific to the processes of an organization,
EISs form compound software systems of higher complexity and specificity than generic
software tools potentially can. Having access to such a system might turn out to be a
relevant competitive advantage for an organization.

From the perspective of a human user, an EIS provides access points for the individual to
interact with the organization. To be able to provide this functionality, EISs expose front-
end functionality to users, while at the same time they include back-end functionality to
represent process knowledge, and to interoperate with other applications. Interaction with
an EIS offers means for a user to integrate with the organization, and make himself or
herself a part of the whole. Consequentially, EISs can have a fundamental social gluing
function to constitute the organization.
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An efficient EIS makes work for human users faster and less prone to errors. It thus also
enlarges the circle of potential actors in the organization, since it allows to integrate actors
into complex processes, who do not have the ability to oversee their interaction with the
overall organizational interrelationships in its entirety.

Since EIS unfold their effectiveness only when specifically adapted to the organization
they are used in, EISs cannot be offered from stock, and be generically sold and deployed.
In order to acquire an EIS, the organization must take the decision to invest in the devel-
opment of a specifically tailored EIS, and continuously consider re-investments to adapt
the system to changes in the organization’s processes and structure.

Whether to use an EIS or not cannot be decided individually by the users of the system,
since the functionality of an EIS may cover multiple parts of an organization [FCO8].
This means that the introduction of an EIS and the decision about developing an EIS, are
inherent managerial tasks and require appropriate authority and discretionary power to
decide about the investment.

Generic single-user software applications for performing working tasks, such as word pro-
cessors and spreadsheets [XSST04], provide functionality not bound to any specifics of
organizational tasks and goals. A number of other software solutions are available as com-
mercial off-the-shelf (COTS) applications [PW09, RMBO1], which can be used to support
collaborative tasks on the basis of generic functionality. Among these components are,
e. g., e-mail applications, shared folders to exchange files, group calendars, wikis, etc.
These tools provide generic functionality for editing merely unstructured documents in di-
verse usage contexts [LHM90]. This is the reason why office software applications can be
produced from stock, and be offered in high volumes by a few number of vendors. When
part of an overall EIS architecture as integrated applications for performing individual
working steps, these applications conceptually appear as subcomponents of the EIS.

EISs denote software systems, which are used to support organizational tasks, e. g., schedul-
ing of working steps for humans, managing information object access, invoking automatic
processing components, or providing access to generic software components for organiza-
tional tasks. EISs, as they are understood in the course of this work, unfold their added
value by encapsulating functionality that is specific to a particular organization. Their pur-
pose is to provide only a limited set of functionality, which specifically supports users to
perform tasks and processes in the organization they are part of.

1.4 Business-IT alignment with methodical support

One central research goal in information systems science is to achieve an alignment be-
tween conceptualized EMs and the EISs that are used to support their execution [GH09,
HV93, LPW09]. It is a cardinal management task to synchronize ideas about how an or-
ganization should operate, with the real circumstances under which the organization runs.
With the use of IT systems as supporting units in organizations, this task also covers the
behavior of software, and it becomes a managerial task to make sure that software systems
in organizations operate in alignment with their business purpose [GH09]. From this con-
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stellation, a dilemma arises in managing organizations. On the one hand, it is an inherent
managerial task to align the ideas and conceptualizations of strategic goals with the real
actions going on in an organization. On the other hand, once software gets involved, a
high degree of technical expertise is required to understand the operation of software, or
even to develop software according to intended managerial conceptualizations.

The approach described here contributes to solving this problem, by specifying a dedicated
software engineering method, which focuses on giving support for performing the trans-
formation from conceptual enterprise models to technical implementation artifacts. The
method combines existing conceptualizations and technological components, and gains an
added value in flexibility and efficiency by offering an integrated and automated engineer-
ing procedure. Its central innovation lies in pre-structuring the process of transforming
domain-specific enterprise descriptions to technical artifacts into multiple dedicated me-
thodical phases.

This is achieved by separating the task of interpreting conceptual knowledge in input en-
terprise models, from the tasks of taking architectural design decisions based on the inter-
preted concepts, and finally generating software artifacts according to the design decision.
These tasks are performed in subsequent methodical steps, and supported by automatic
model transformations. Human design decisions are incorporated where required, and hu-
man software engineers are guided through the development process by tooling support.
As interfacing concept between the two tasks of interpreting input models, and generat-
ing artifact output, the notion of “implementation strategies” is used, which get associated
with conceptual elements of the input enterprise models using a mapping model.

Implementation strategies represent formalized descriptions of technical design decisions
about how to control the code generation procedure. Which implementation strategies to
apply for which conceptual notion, can either be decided by software architects during a
development process, or automatic rules can be formulated beforehand, which allow an
automatic association of implementation strategies with enterprise model concepts. Af-
ter all required implementation strategies are specified and referenced from the mapping
model, code generation templates will transform the chosen implementation strategies to
software artifacts.

The implementation strategy pattern provides an abstraction over technological artifacts,
while not being concerned with the actual implementation of these artifacts. This way,
it provides an adequate abstraction to serve the purpose of a linking concept between
interpreted domain-specific concepts in enterprise models on the one hand, and design-
decisions for their technical realizations on the other hand. This allows the SEEM method
to explicate an ontological turn from organizational descriptions to technical system speci-
fications via dedicated modeling concepts, instead of hard-coding the decisions about how
domain-concepts are interpreted and mapped, in a monolithic model transformation.

The combined use of a mapping model, implementation strategies, and the correspond-
ing model transformations, provide dedicated methodical abstractions for coping with the
method’s requirements to bridge abstraction gaps between conceptual enterprise model
specifications, and EIS implementations (see Sect. 4). Creating such a method is a genuine
task of method engineering [BLW96, JJM09]. To have such a method at hand promises
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a benefit both in cost-efficient development of reliable EISs, as well as supporting the
alignment between business requirements and information technology.

1.5 Domain-specific software engineering approaches

Domain-specific software engineering (DSSE) is a methodical approach to develop soft-
ware on a higher level of abstraction, than with traditional development techniques, e. g.,
than with object-oriented modeling [KT08]. Older development methods make use of
modeling as a way of abstracting from textual constructs in programming languages,
which, e. g., is a done by the Model-Driven Architecture (MDA) [Obj03] approach com-
bined with UML [BJR99], to visually express technical constructs of a software system.
DSSE accounts for creating domain-specific modeling languages (DSMLs) as part of the
overall software engineering procedure [FralO], and then using these languages to create
models which can be consulted for software artifact generation later on. By applying a
DSML, models consulted for software engineering can reach a significantly higher degree
of semantic richness, because the underlying language constructs of the modeling lan-
guage do not refer to technical constructs of a target system only, but allow to describe the
solution to a specific problem in adequate terms that structure the solution space.

Different characteristics of design approaches towards DSMLs can be classified into mul-
tiple categories, based on “domain expert’s or developer’s concepts”, as well as on the
“generation output”, on “the look and feel of the system” to build, and on the “variability
space” of the solution domain [LKT04]. A DSML may carry one or more of these char-
acteristics, which allows to classify concrete DSMLs into distinct categories, depending
on whether the characteristics are met or not. EMLs can be understood as DSML falling
into the category of languages, which are exclusively designed based on domain expert’s
or developer’s conceptualizations.

A comprehensive DSSE method comes with two major methodical components, which are
a domain application programming interface (API), and code generation transformations.
Code generation transformations bind together the abstract concepts in the DSMLs with
the functionality provided by the domain API, by creating artifacts from domain-specific
models, e. g. program code, which can be deployed on top of the domain API to form a
complete software system. Code generation transformations provide the “glue” between
domain-specific models and their technical implementation, they perform a formal inter-
pretation of the meaning of the domain-specific model’s semantics, to translate them into
constructs of the technical software domain forming a running system.

These general methodical notions known from DSSE approaches can also be applied to
EMLs, because EMLs are a specific kind of DSMLs. To provide a fruitful development
method, however, concrete methodical decisions have to be taken in advance, in order to
make the conceptual knowledge represented in EMLs efficiently applicable in a special-
ized DSSE procedure for enterprise model-driven software engineering (EMDSE).
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1.6 Deriving requirements towards enterprise information systems from enterprise
models

EMs are stated in terms of describing an organization from a high-level perspective, and
the organization is presented as the primary subject matter. The terminology used in EMs
covers concepts of actions, responsibilities, resources, goals, etc., which are all abstract
enough to carry meaning independent from any concrete organizational or technological
mode of realization. Both the organizational realization, as well as any possible technical
implementation of the concepts, need to be operationalized by interpretation procedures,
to derive applicable knowledge from the conceptual models.

When software development is put into focus, it becomes possible to derive a number
of facts from EMs, which provide a solid fundament to methodically guide a software
development process for these applications.

Among the requirements towards EISs that can be derived from EMs are

* the actions required to be performed in available business processes, i. e., the func-
tions offered by the application

* the set of data resources and electronic documents the application will deal with by
its functions

* relationships to other software components to be interfaced to

e user authorization information, derived from conceptually modeled roles and re-
sponsibilities

* task scheduling and physical resource allocation constraints

* user communication relationships and available information channels

Possibly, also meta-information about the software can be derived, such as strategic mile-
stones for the software development process, or long term version management plans
based on priorizations from strategic enterprise modeling perspectives.

To gain this knowledge from EMs, a procedure is required which allows for changing the
focus on the primary subject matter in enterprise models from the organization as primary
object of interest to the software as described object. Such a procedure resembles an
ontological turn in the way the knowledge is looked at, from an outer perspective on the
organic action system of an enterprise, to a formal perspective on internal software system
components. A procedure of this kind is suggested in this work. The ontological turn will
be accomplished by a multi-phase model transformation, and a methodically guided way
to enrich the knowledge derived from EMs, with technical detail knowledge expressed
using dedicated modeling constructs. The method can be configured along a continuum
between a fully automatized procedure, using elaborate automatic transformations, or a
methodically guided manual development process, combining manual develoment steps
and software-supported automatized steps.
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1.7 Structure of this work

The work at hand is structured into five main parts. Part I gives an overview on the role
of EISs in organizations and introduces underlying questions of aligning business goals
with technology in Sect. 1. A typical use case of the method is presented as an illustrative
example in Sect. 2.

Part IT lays out the fundamentals of the presented research work, starting in Sect. 3 with
introducing underlying terminology and related scientific work. Essential requirements
towards the method and its outcome are elaborated in Sect. 4, and an introduction into
the methodological components, which are consulted to form the engineering method, is
given in Sect. 5.

Part III elaborates the entire engineering method for model-driven development of enter-
prise information systems from enterprise models. The fundamental conceptual building
blocks, which make up the methodical elements of the method, are presented in detail in
Sect. 6. Dynamic aspects of the method are covered in Sect. 7, where methodical proce-
dures of how to apply the method are illustrated.

In Part IV, prototypical example implementations are shown as an additional way of de-
scribing and clarifying the method. Sect. 8 contains general considerations about the archi-
tecture and implementation of enterprise information systems, and develops a domain API
to formalize the design decisions taken for the creation of EIS. Concrete implementation
strategies for conceptual enterprise model elements are suggested in Sect. 9. A compre-
hensive example of developing a supply-chain monitoring application in a service oriented
architecture (SOA) environment is shown in Sect. 10, and more detailed information about
the introductory example is made available in Sect. 11. The procedure for generating ex-
ecutable software system artifacts, and the tooling support that has prototypically been
implemented to demonstrate the use of the method, are shown in Sect. 12.

Part V summarizes and evaluates the presented approach in Sect. 13, and Sect. 14 provides
indications of further research work left for future considerations.
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2 An overview example: Online web-shop

As an example, consider the business process model shown in Fig. 2, which has been
created using the MEMO Control Flow [Fral1b] language. It represents a typical online
order process, in which an internet user Cust omer places an order via a web page, and an
employee of the Shipping Department of an organization is responsible for carrying
out this order, and sending the requested goods to the customer.

The model shows that an order process is initiated, when a customer enters the web shop.
As a first step, the customer browses through the product catalog and selects products to
order. This step is modeled as a semi-automatic process-step indicated by the symbol of a
human operating a computer, which means that it is performed as an interaction between
a human user and a software system. By explicitly referencing the Web Browser re-
source, the model states by convention that this process-step is to be performed using a
web-application front-end.

The business process model shows the order process only with relevant details from a
business perspective. For example, it explicates alternatives in the flow of control and thus
indicates, at which points decisions are to be taken. The model also explicitly names the
information resources Product List and Order, as well as an existing information
system which is described by its name Storage Management IS as to be used for
managing the physical goods storage. Roles of responsible actors are referenced by each
process-step with human interaction.

The roles and resources referenced from the business process model have been specified
in separate organization and resource models. The organization model is shown in Fig. 3.
The resource model simply lists the available resource types, without specifying further
details. The allocations of resources, meaning the specifications of which resources are
involved in which process-steps, are depicted in Fig. 4.

The technical architecture of the example application to be generated is shown in Fig. 5. It
represents a Java Server Pages (JSP) [Ber03] application environment, with a central set of
HTTP-accessible services realizing required coordination functionality, and client appli-
cations accessing the central set of services via a remote network connection. The central
coordination service provides functionality to persist the states of running processes in
one central place. This includes information about process-steps waiting to be performed,
assigned actors responsible for performing process-steps, process instance variables, or
synchronization points in process instances waiting to be reached. The example service
API (see Appendix 6.5) provides this functionality as a set of JAVA classes. Alterna-
tive architectural conceptualizations might choose to put more responsibility into a central
coordination node. This may include process coordination by using a central workflow
processing engine, e. g., a Business Process Execution Language (BPEL) interpreter (see
Sect. 10). The example implementation at hand realizes process coordination in a decen-
tral way, by letting each actor’s clients individually decide about further processing steps,
assigning them to different actors where necessary.

To fully understand the meaning of the business process model (BPM) shown in Fig. 2,
a number of assumptions are required to be known, which are not detailed out in the
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Figure 3: Organization model according to the example process

model. It is inherent to human understanding that perceived information gets enframed
by the backgrounds and experiences of the recipient [Hum48]. As a consequence, on the
conceptual business process level, it is very natural to leave out detail information, in order
to make the model better understandable and efficiently perceivable.

However, to explicate all necessary knowledge needed to gain an automatically executable
description of the process depicted in Fig. 2, some assumptions have to be made, to gain
more precise semantics from the conceptual models. Some of these assumptions are:

* There is one single information resource Product Catalog which exists prior to start-
ing the process. The name of the process-step “Browse product catalog and select
products” indicates that this information resource is accessed in a read-only way.
Domain-specific knowledge makes clear to a human user of the model that a catalog
is typically subdivided into multiple entries. Making these entries readable via a
graphical user interface (GUI) is the central task of this process-step.

* Order, although modeled with the same modeling construct as Product Catalog, does
not represent a single information resource instance, but a type of information re-
source of which multiple instances can exist. This is clear to a human recipient with
basic domain-specific knowledge, knowing that a commercial enterprise would typ-
ically deal with multiple orders over time. The name of the process-step “Place
order or cancel” makes clear to a human recipient that a new instance of one order
information object is to be created in this step.

* When semi-automatic process-steps, i. e. process-steps in which human users in-
teract with software, reference to information objects, it can be assumed that the
user will be presented a kind of electronic document as an interface to the desired
information. The document may be editable or read-only, depending on the purpose
of the process-step.

* Involving a Web Browser in a semi-automatic process-step can intuitively be in-
terpreted in a way that a web-based front-end application is used to perform this
process-step.
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Figure 4: Allocation models according to the business process-steps and resources

The role Customer, in combination with a web-based front-end application, gives
the idea that the product catalog is publicly accessible via the internet. Otherwise,
an explicit login step could have been modeled. The order process is thus publicly
accessible for customers.

The role ShippingEmployee will be filled by one concrete employee of the shipping
department of the modeled company. One particular employee will be determined
and will be responsible for processing the order in all subsequent steps of the same
process instance. Since the role ShippingEmployee is used multiple times, it is rea-
sonable to assume that during execution of the same process instance it will be the
same employee who performs subsequent process-steps.

The decision whether to submit an order or to cancel the order process is under-
stood as a decision taken by the actor performing in the semi-automatic process-step
“Place order or cancel”.

The decision whether a submitted order is valid or invalid, as a result of the semi-
automatic process-step ‘“Validate order”, is also assumed to be taken by a human
performing this process-step. The software component used in this process-step can
thus be expected to offer user interface components to input the decision.
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Figure 5: Architecture of a Java Server Pages (JSP) based application as generation target
for the example

It is natural to human cognition that details are left out when communicating and sym-
bolizing knowledge. As a consequence, there are still a large number of ambiguities and
missing details in the model. Although providing suitable means for communication and
gaining a common understanding about business processes among human stakeholders,
the business process model intentionally does not give hints on all detail information that
would be required to provide software support for the actors involved in the process. Be-
cause of this, a development method now is applied, which formalizes the interpretation
of the conceptual model based on the above assumptions, to bridge from the conceptual
business process level description to an executable implementation.

Applying the method The SEEM method presented in this work allows to augment
the business process model with the required detail information for implementation, in
a structured an repeatable manner. The method keeps the layers of abstraction separate,
which either describe the conceptual business perspective with an intentionally blurred
semantics, or describe implementation concepts that technically realize a software system.
Intermediating concepts are provided by the method, which serve to explicate connections
between both layers.

The first step to apply the method, is to convert the enterprise models to a compact repre-
sentation which contains all extracted enterprise model concepts in a single non-graphical
model. This step serves to get an internal representation of the enterprise models for eas-
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ier further processing of the method. To perform this step, a horizontal model-to-model
transformation is run, which converts the enterprise models to the internal representation.

The software architect gets informed by an automatic validity check, if the original enter-
prise models do not contain sufficient information to unambiguously create the extracted
representation. In this case, the original enterprise models are revisited, and the transfor-
mation is run again, until the validity check succeeds.

After this step, the software architect selects implementation strategy modeling languages,
which reflect possible implementation options on the desired target platforms. Subse-
quently, an initializing model-to-model transformation is run to create both an initial
mapping model, and initial implementation strategy models. The according model-trans-
formations, and the respective implementation strategy meta-models, have been developed
earlier, as part of the adaptation of the method to the desired target architecture.

The generated mapping model is a non-graphical model structure as shown in Fig. 6, which
binds concepts from the original enterprise models to modeled implementation strategies
in a formal notation. When the transformation is run, the mapping model is initialized with
a list of mapping entries, each one binding a concept from the extracted enterprise model
to one or more implementation strategies listed in the implementation strategy model, or
in multiple implementation strategy models, if artifacts for more than one platform are
generated simultaneously.

The transformation also analyzes the enterprise models’ semantics, to initialize the im-
plementation strategy model with automatically suggested implementation strategies, and
associate them to enterprise model concepts in the corresponding mapping model entries.
Depending on the degree of automation, which is reflected by the effort put into devel-
oping platform-specific implementation strategy model initialization transformations, a
100% code generation approach can be strived for, which means to automatically create
a fully populated mapping model containing all implementation strategy references re-
quired to successfully run the code generation step. Alternatively, if the effort for creating
such elaborate transformation exceeds the one for manually making architectural decisions
about how to represent enterprise model concepts via implementation artifacts, the map-
ping model transformation can be restricted to create a model with yet to be completed
mapping model entries, in which references to associated implementation strategies are
manually created by software architects and developers.

Remaining manual development tasks after initializing the mapping model, and its ac-
companied implementation strategy models, cover the detail specification of data types for
information objects used throughout the business process, as well as creating GUI repre-
sentations of these information objects, typically realized via form-views on the modeled
data. The example uses XML Schema Definition (XSD) as data type specification mech-
anism for information objects, and XFORMS [Dub03] as technology to specify editable
forms and other views for Extensible Markup Language (XML) data. Besides these tech-
nical specifications, a collection of product data with related images in a database needs
to be created, and, in case of the chosen JSP web application target architecture, manual
development work is additionally remaining for creating the visual web-site layout.
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Figure 6: Mapping model with links to elements from the conceptual model and the im-
plementation strategy model

After manually refining the initial mappings, the software architect runs validity checks
on the mapping model and the implementation strategy models. The steps of manual
refining and running validity checks are then iterated until the validity checks pass without
complaints.

Subsequently, all information for creating a running software system is available in the
combination of the extracted enterprise model (EEM) model, the mapping model, and the
implementation strategy model. From these configurations, an executable software system
is created by using a model-to-text code generation transformation, which takes these three
models as input, and generates executable artifacts. An excerpt of the example’s code
generation templates in a surrounding editor application is shown in Fig. 7. The example
code generation templates are written in the XPAND language (see Sect. 12).

Fig. 8 gives an impression of how the developed software presents itself via a graphical
user interface.
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main.xpt = =g
«REM» =

* Realization of implementation strategy 'Form®.
«ENDREM:
«DEFINE implementation(ProcessMemberMapping pmm) FOR Form»
«LET ! this.resourceAccessTargets.has() AS readOnly»
<% deferred = true; // (don't go to next step, this step is blocked until form is submitted) %>
<% out = headOut; %>
<xf:model>
<xf:instance><data xmlns=""><%=resources.get("«this.resourceAccessSources.first().name»")%></data>
<xf:submission id="go" action="index.]jsp?step=<%=step%>&amp;id=<%=processId%>" method="post"/>
«IF readonly»
<xf:bind nodeset="//*" readonly="true()" />
«ENDIF»
</xf:model>
<% out = bodyOut; %=
<xf:group ref="/data">
«REM» include xform from file «ENDREM»
<%=context.readFile(request.getRealPath("/"), "«this.formDescription.name»")%>
</xf:group>
<div class="clear"=&nbsp;</div>
«IF | readOnly» «REM» if not read-only, output send-button «ENDREM=
<xf:submit submission="go" class="buttonok" appearance="minimal"><xf:label class="buttonok"><img src=":
«ENDIF»
<% out = pagelut; %>
«ENDLET»
«ENDDEFINE» =

Figure 7: Code generation templates of the example project inside editor application
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Figure 8: Graphical user interface of the developed software application
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Part I1

Approach

I come to you defences down
With the trust of a child

Peter Gabriel, “Red Rain” from the album “So”, 1986

3 Concepts and terminology

Several key concepts and related terminology are used throughout the upcoming docu-
ment. To introduce the underlying basics, and to form a list of prerequisite concepts for
the method, these fundamental conceptualizations are sketched for introduction in the fol-
lowing.

3.1 Modeling languages, meta-models and model instances

Models in information systems science can be understood as semi-formal constructs, which
allow to store and interchange knowledge, and serve as alternative means to human lan-
guage or other means of expression, to utter facts about some perceived or constructed
parts of reality. Models can generally be considered semi-formal, because they typically
consist both of a syntactically strictly defined formal structure (which, stripped down to
its mere syntax, could be called a data structure in computer science terms). Additionally,
informal semantics can be expressed by using natural language labels and identifiers, as
well as comments and annotations to model elements. If equipped with a graphical nota-
tion, applying visual patterns to model elements opens up a wide range of further means
for expressing informal semantics.

For the purposes of the proposed method, the informal aspects of semantics stored in
models will play a role when determining default values for formal elements in generated
models.

Modeling languages Syntax and formal semantics of models are specified via model-
ing languages. Every model is conforming to, or is “written in”, an underlying model-
ing language. Models may also combine elements from multiple modeling languages,
e. g., by referencing elements from other models, which are written in different modeling
languages. If modeling languages provide a graphical notation, the syntax can be dis-
tinguished between an abstract syntax, which determines the formal structure in which
model content is represented, and a concrete syntax, which consists of graphical notation
elements that visually represent model elements.
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Meta-models Modeling languages are semantic entities constructed by humans, which
need their own means of expression to be specified. One way to specify a modeling lan-
guage, is the construction of a meta-model [CSWO08, Kle08], which expresses the available
language elements, and the way they can be validly combined and interrelated throughout
the use of the language. When applying a method, which makes use of multiple mod-
els in different modeling languages, and of model transformations describing relation-
ships between these models, using meta-models to specify the involved modeling lan-
guages is an elegant way for specifying languages. When different meta-models are con-
structed using the same meta-modeling language [Fra08], they conform to an identifcal
meta-meta-model, which allows to apply specialized model transformation languages for
meta-models of that kind, and to reuse existing model tooling support.

Model instances In some contexts, the distinction between a model on the one hand, and
a meta-model describing its modeling language on the other hand, remains clear without
further need to mark the model as being an instance of its meta-model. However, some-
times the term model instance is used to explicitly denote the realized language artifact,
not the language itself or its declaration. Being an instance of another model, is always
relative to the use of the referenced other model as the language description of the in-
stance. Because of this relative relationship, any meta-model can also occur in the role
of a model instance, namely an instance of another meta-model (a meta-meta-model from
the original point of view), which was used to specify the meta-modeling language the
model conforms to. However, such confusion is not likely to occur in the course of the
upcoming method description, because the developed method makes use of one level of
model instances, and one cleanly separated meta-level.

To summarize the introduced terms, Fig. 9 visualizes the mentioned meta-meta-model,
meta-model and model instance levels.

3.2 Model transformations

Formal relationships between models, in terms of how one model is semantically inter-
preted to influence the creation of another model or technical artifact, are described by
model transformations. Model transformations take one or more models as input, and gen-
erate an output artifact, which is either another model, or a piece of technical artifact or
any textual output generated throughout the transformation. Transformations, which out-
put another model, are called model-to-model transformations, or m2m transformations.
Transformations to general artifacts are referred to as model-to-text transformations, or
m2t transformations.

The way how a model transformation operates, is declared via a model transformation
specification. There are different approaches how to describe model transformation spec-
ifications. From a developer’s point of view, model transformations are specified by pro-
grams in a specialized higher-order language, which allow to describe the desired trans-
formation operations, in terms of querying information from the source models, and sub-
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Figure 9: Meta-meta-model, meta-model, and model instance levels, with example model
types used in the presented method

sequently control the output process of an artifact, more efficiently than general purpose
programming languages can do. Several specific model transformation specification lan-
guages are available, e. g., QVC [Obj08], XTEND/XPAND [Eclc], or, in a wider sense con-
sidering Extensible Markup Language (XML) data structures as models, XSLT [Tid01]
for transforming between XML formats. Specifications written in these languages pro-
vide sufficient information for a model transformation engine, i. e., an interpreter for the
transformation specification, to execute the transformation. Every run of the transforma-
tion interpreter, with possibly different models as input, is called a model transformation
instance. I. e., a model transformation instance comes into existence, when a model trans-
formation specification is executed, and there can be any number of model transformation
instances for one model transformation specification.

The specification of a model transformation generally consists of two complementary
sides, which are typically declared using two different kinds of expression syntaxes in
model transformation languages. The first logical step in performing a transformation is
querying information from one or more source models, given as input to the transforma-
tion. For this purpose, multiple languages for describing model queries are available and
may appear integrated as partial language for the query side in a complete model trans-
formation language. To usefully operate on the queried data, the model transformation
language also needs an output side, and means to control the generated output. This is typ-
ically realized by a template language with basic conditional and algorithmic expression
features, which operates on the information queried from the source models, and outputs
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generated artifacts accordingly. Examples of model transformation specifications written
in the XPAND language are provided in Appendices A.3.3 and A.4.3.

Since model transformations operate on input models and output models, which each may
be formulated in a different modeling language, the specification of a transformation natu-
rally has to be made with knowledge about the languages of all the involved models. This
is required, because the specification of a transformation determines, which elements to
query in the source models, and which elements to create in the target models or other
output artifacts. Thus, there is a reference from each model transformation specification
to the language descriptions (meta-models) of the models involved in the transformations.

It turns out that when referencing multiple modeling languages from one transformation
specification, it is useful to have the language specifications formulated in a common meta-
modeling language, according to a common meta-meta-model [Fra08]. Using the same
meta-modeling language for all language specifications of involved models in a transfor-
mation, makes type relationships between elements in different languages easier to handle,
and thus allows for easier binding between the query expressions in the model transforma-
tion language, and the subsequent output control expressions.

Model transformations, which output models or artifacts on the same semantic abstrac-
tion layer, as the source models are located on, are called horizontal transformations, while
transformations, which convert between different levels of abstractions, are named vertical
transformations. Horizontal model transformations represent the simpler class of transfor-
mations, because their task is mainly to re-structure the syntactic relationships between
elements from different source modeling languages and target output languages, and to
rename elements between different models. Vertical transformations typically transform
models from a higher level of conceptual abstraction, to models which contain more con-
crete details about technological realization. In these transformations, semantic interpre-
tation of the source models is performed, in order to grasp formalized facts expressed on a
higher level of abstraction, which contain knowledge about the output on the lower level.
To interpret content in an automatic transformation, hints based on analyzing identifier
names, conventionalized model element constellations, or values in comment fields, etc.,
can be applied.

In Fig. 10, the relationships between modeling languages, model instances, model trans-
formation specification languages, model transformation specifications and model trans-
formation instances are schematically depicted.

Model transformations can create fully valid output artifacts, which are ready to be further
processed, or to be deployed in a target environment. This class of transformations can
be called total transformations. In contrast to total transformations, partial transformations
create models as output, which are not immediately ready for further processing. Gen-
erated output from partial model transformations may still miss required values or refer-
ences. These artifacts, which are typically models resulting from a partial model-to-model
transformation (not artifacts from model-to-text transformations), require additional man-
ual editing or other methodical means to be completed, before they can further be used.
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Figure 10: Relationships between modeling languages, model instances, model transfor-
mation specification languages, model transformation specifications and model transfor-
mations

A generic model-transformation-pattern Model transformations play an important role
as methodical components in any model-driven development approach [KTO08, Obj03].
They provide links between model instances that are used throughout a development pro-
cess. At the same time, they contain formalized knowledge about the syntactic and seman-
tic relationships between the modeling languages, in which the involved model instances
are expressed. In order to describe the actions to be carried out by a model transformation,
the transformation description must refer to language elements of both the input models,
and output models, of the transformation. Transformation descriptions can be any pro-
grams that read in models, and output other models after some kind of processing. While
such programs could in principle be written in any programming language, specialized lan-
guages are available, which provide dedicated programming constructs to perform model
transformations, e. g., the XPAND language [Eclc], or QVT [Obj08].

The description of a model transformation provides formal operative semantics, which de-
scribes how two or more models interrelate. However, current model-driven software en-
gineering (MDSE) approaches typically regard a model transformation as one monolithic
mechanism, which performs the desired input-to-output mappings in one step [ZSZ11].
This point of view on model transformations reminds of the early days of software devel-
opment, in which any architectural structuring of the internals of a software product was
left over to the intuition of programmers, without providing architectural reflection about
the relationships between the individual parts of the whole. It is thus one scientific goal, to
reason about the internal structure of model transformations, and to identify architectural
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invariants that are common to all model transformations used for MDSE. Once common
architectural features have been identified, they can be consulted to explicate a develop-
ment method for creating model transformations, as part of an overall MDSE approach.

Having such a procedure at hand, methodical underpinnings for the challenge to get from
conceptual descriptions (requirements) to executable systems are made available. By not
merely treating model transformations as black boxes, which are functioning “somehow”,
but by taking care of their internal structure, the process of applying an MDSE method
can be raised on a more elaborate methodical level. The Software Engineering with En-
terprise Models (SEEM) approach developed in this work makes use of the identification
of internal model transformation structures, by splitting the overall transformation process
into multiple dedicated phases, which are easier to develop and to maintain individually,
compared to a single monolithic transformation approach. These phases conform to the
notion of a general model-transformation-pattern as shown in Fig. 11.

4 N\ [ N\ N\
Analyze Decide Generate
Pick imple-
Traverse . mentation Fill template
» model components ~ skeletons
structure with values -
Read input Derive N \évgéz IZU;EUt
models - default " other artifacts
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Query model . to technical
»content into representa-
variables Recast tion
> structural
properties
- AN /. J

Figure 11: Model-transformation-pattern

The underlying idea of the general model-transformation-pattern is that any transforma-
tion procedure used in MDSE consists of applying the pattern of a) first analyzing the
contents of the input models, b) then, based on this analysis, deciding how the structure
of the resulting implementation artifacts is to be organized, and, c) finally outputting im-
plementation artifacts based on structural decisions taken in b). The SEEM method makes
use of three transformation phases, which are the adapter transformation (see Sect. 6.3.1),
the mapping model initialization transformation (see Sect. 6.3.2), and the code generation
transformation (see Sect. 6.3.3), to methodically reflect this general pattern, and to of-
fer individually maintainable parts of the entire transformation description, instead of one
monolithic transformation.
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3.3 Validity checks

To determine, whether a model is complete or correct in a specified sense, validity checks
can be applied. Validity checks, as understood in this work, perform tests on model in-
stances for required values and available references. They may also perform semantic
checks, i. e., query the content of a model and apply comparisons and other checks, to
make sure that values supplied with a model are coherent for further processing. The
terms “model checking” or “model validation” are sometimes synonymously used with
“validity checking”. To avoid misunderstandings concerning divergent uses of these terms
in other disciplinary contexts, the work at hand exclusively speaks of validity checks.

Especially at points in the method, where incomplete models as results of partial model
transformations have to be edited manually, validity checks are helpful to determine at
which points a model still is considered incomplete. Based on this automatically derivable
knowledge, methodical support can be provided, to efficiently guide software developers
through a list of model elements which require further manual editing.

In the same way, as a model transformation instance resembles the execution of a model
transformation specification performed by an interpreter engine, a validity check instance
is the result of a validator’s run, interpreting a validity check specification. A validity check
specification contains of a list of boolean expressions, each one incorporating queries on
the model, and describing formal rules that characterize a model’s completeness or se-
mantic validity. If any of the boolean expressions listed in the validity check specification
results to £alse, the entire check has failed, and the model can be considered invalid or
incomplete. Appendices A.3.1 and A.3.2 contain an example validity check specifications.

Boolean expressions that make up validity check specifications, are typically formulated
in a model query language, which reads values from the validated models, and tests them
against desired conditions. When applying model transformations and validity checks, it
is recommended to use a validity check specification language, which makes use of the
same query expression language as the model transformation language used in the same
development project. Using the same query expression language makes it possible to share
utility functions among model transformation specifications and validity check specifica-
tions. This way, complex queries can be reused both for validating models, as well as for
querying model content to control a subsequent transformation process.

The validity check specification language used in the example projects in this work are
written in the CHECK language. This language is part of the XPAND / XTEND language
family contained in the Eclipse Modeling Framework (EMF), and uses expressions in the
XTEND language to formulate boolean validity conditions for models. Shared queries can
be modularized in extension files, which can be included both by validity check specifi-
cations in the CHECK language, as well as by model transformation specifications in the
XTEND and XPAND languages.
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3.4 Business process models and workflow models

There is a traditional distinction between models, which represent structural features of a
system, and others, which incorporate knowledge about the dynamics of ongoing actions.
Both aspects can be expressed with several different modeling languages. Static structure
models for general purposes may be given as, e. g., entity-relationship models [ThaO0],
UML class diagrams [BJR99], or domain-specific system design languages, which focus
on structure, e. g., the SAP Standardized Technical Architecture Modeling (SAP-TAM,
[SAP07]) language.

Another ontological perspective is taken in by looking at the dynamics of a modeled sys-
tem. Models, which capture information about actions and events in a system, belong
to the class of process models. Such models typically express sequences of process-steps
taken throughout a process, usually along alternative decision paths and parallel sequences.
Process models may optionally also include the notion of events, which mark points with
specific properties in the process sequences, €. g., a change in state of an entity, or a point
at which specific knowledge about the process becomes available, e. g., “all following
process-steps will be automatic”.

There is an inherent link from process models to structure models, since any description of
what happens, has to refer to entities, which either actively take part in the process, or are
passively involved, e. g., by being manipulated or consumed in the process. This means
that any process model necessarily has to reference structural elements. This is not the
case vice-versa, since structure models indeed can be formulated without any explicit ref-
erence to process elements. However, structure models require at least implicit knowledge
about processes that operate on the modeled structure, or a mechanism that works on it.
Otherwise there would be no value in formulating structure models, they would be useless
without anything to imagine that can happen according to the modeled structure.

The sequential relationship between individual process-steps, and optionally events, is
typically expressed by a control flow relationship, which is often visualized in graphical
process modeling languages as arrows or lines connecting individual process-step ele-
ments. Fig. 2 shows an example business process model, another example is given in
Fig. 12 a). Both models are created with the business process modeling language inte-
grated in the Multi-Perspective Enterprise Modeling (MEMO) enterprise modeling lan-
guage family [Frallc, Fral2].

Several traditional techniques to formulate general purpose process models are available,
e. g., multiple variants of flow charts or structograms [NS73] or Petri nets [Dial0]. While
these approaches focus on a conceptual description of processes, without a closer rela-
tionship to further applications of the process models, languages like the activity diagram
language of the Unified Modeling Language (UML) [BJR99] provide a process modeling
approach, which is prepared for linking process description constructs to object oriented
structural software concepts.

A fine-grained distinction sometimes is required for differing between the notion of pro-
cess types and process instances. Process models typically represent process types, i. e.,
they describe possible actions and events, which are to be realized by acting entities dur-
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ing process instantiation. To form a process instance, a process model has to be executed.
While the process executes, realized indicators such as processing time, decisions taken to
control the process flow, resources consumed, etc., can be documented in a log. This log
can later serve to represent the process instance for ex-post reference. An actual process
instance only exists during the time of its execution, due to the temporal nature of the
issues expressed by process models.

The relationship between process type declarations and individual process instances is
symbolized in Fig. 13. The figure shows how visual representations of process types can be
enriched by information from process logs, to form an ex-post representation of individual
process instances.

Business process models (BPMs) [Wes07] are process models with domain-specific se-
mantics for expressing conceptual knowledge about processes in organizations. Appli-
cations of BPMs cover the description of work processes incorporating manual actions
and human-made decisions, the interaction among humans, as well as the interaction with
software systems or other machinery, and automatic steps. BPMs are used to express a
high-level view on modeled process types without details on how individual process-steps
are carried out. To provide this overview, and to link to other description perspectives,
BPMs can contain references to entities such as persons, machinery or supplementary re-
sources, which play a part in the modeled business process.

A high-level perspective is also taken in by workflow models (WfMs) [vdAvHO04]. How-
ever, in contrast to BPMs, the aim of using workflow models is to provide a technical view
on the automatically executable parts of business processes. As a consequence, a work-
flow model does not specifically relate to human actors or physical resources as BPMs do,
these elements are missing compared to BPMs. Instead, WfMs are enriched with technical
detail information about the invocation of software services.They are executable software
artifacts on a high level of functional aggregation, used to orchestrate other software com-
ponents which provide individual pieces of business functionality.

Fig. 12 a) shows an of a example conceptual business process model, as it can be used as
input for the SEEM method, contrasted by Fig. 12 b), which contains a representation of a
machine executable process derived from the conceptual model by means of the method.
A larger number of elements in the executable model indicates that this model describes
the process on a finer level of granularity and with different elements than the conceptual
model. In the example, first an order message is sent from a retailer to a good’s producer.
After the order is confirmed, and the ordered good has been produced or released from
stock, a transport instruction is sent to the logistician, who is responsible for transporting
the goods. The generated Business Process Execution Language (BPEL) process is com-
posed of a sequence of pairwise related receive and send operations, with optional plausi-
bility security checks performed by a central coordination and execution platform, which
runs the BPEL process. The exchange of documents is realized by transmitting XML-
encoded EDIFACT [Ber94] messages via Simple Object Access Protocol (SOAP) calls
to web-service operations. Several existing EDIFACT document types are consulted for
implementing the electronic document communication, as it is modeled in the conceptual
business process model. The ORDER type represents order documents, while ORDRSP
is used for order confirmation. IFTMIN stands for “instruction for transport”, which is a
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message type with semantics for configuring a transportation contract. RECADV finally
realizes a document type for sending delivery confirmations.

As means of control, the coordination and execution platform monitors the electronic
document exchange and performs validity checks on the exchanged information. In the
example, this is done with regard to the IFTMIN message, which undergoes plausibility
checks performed by the IFTMIN_AssetCheck service. Since ice cream is transported in
the example case, this service may ensure that the transport instructions include the de-
mand for keeping the temperature of the transported goods constantly below -4°C. In the
generated BPEL process, the result of the IFTMIN_AssetCheck service is then processed
by the subsequent if-block, and in case of an invalid transport instruction configuration, a
corresponding mitigation process gets invoked. The remaining parts of the process imple-
mentation, which are not displayed in Fig. 12 b), handle the transport configuration and
the exchange of the final RECADV confirmation document.

3.5 Resources and information objects

The range of conceptual language elements for expressing resources involved in process
descriptions is typically narrow. Common business process languages offer generic re-
source concepts without further differentiation, e. g., the Business Process Modeling No-
tation (BPMN) only knows a plain general “Resource” concept. Some research activities
aim at elaborating more differentiated resource description languages for specific domains
[FHK*09]. These approaches, however, have not yet influenced widely used enterprise
modeling techniques. Workflow-oriented modeling languages generally represent any re-
source by the technical concept of a variable carrying data.

The plain conceptualizations of the notion of resources on both the conceptual level, and
the implementation level, may result from the fact that the notion of a resource is too
general to be further differentiated by means of a general purpose modeling language on
either level of abstraction. In fact, a resource can be virtually anything, the term “resource”
belongs to the most overloaded terms in information systems science.

For the method proposed in this work, which serves to bridge between a conceptual process
perspective, and an implementation view on processes, it makes sense to further differen-
tiate between different notions of a resource. Resources in conceptual business process
models may either be passive physical resources, which are goods, material, or physical
documents, or active physical resources, such as information technology (IT)-equipment
or machinery. In addition, conceptual BPMs can include resources with the notion of im-
material information resources, such as master data about products and related business
partners, operative status information about a running processes, etc. [WMB103] To in-
terpret the meaning of resources in a conceptual BPM, it makes sense to distinguish any
use of a general resource type by these fundamental categorizations.

In implementation-level models, such as workflow descriptions, a slightly different view
on resources is taken in. By its very nature of describing a software system’s operating
steps, a workflow model does not need to reflect the notion of physical resources directly.
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(b) Example excerpt of an executable workflow model

Figure 12: Conceptual business process model versus implementation-oriented executable
workflow model
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In software systems, any physical resource is indirectly represented by an information ob-
ject, which describes the physical resource. A physical resource’s description may consist
of details about its location, size, weight, or other material properties. There is no way to
directly cope with physical objects via software, which is why every reference to physi-
cal resources is indirectly wrapped into information objects on the implementation level.
While with respect to this distinction, the notion of a physical resource becomes even
less distinctive on the implementation level, than in the conceptual view, some additional
generic structure can be applied to what an information resource is from an implementation
perspective. Since for resources on the implementation level it is known that they are to
be represented as information objects, generic features for describing information objects
can be assumed as being part of the notion of information objects on the implementation
level. Two of these features are a data type, which determines the information objects syn-
tactical structure and possibly formal semantics, and a storage mechanism which provides
means to represent the information persistently, if this is required by the process seman-
tics. This more fine-grained notion of what a resource is on the implementation level will
be exploited for formal specification in the course of the method elaboration.

3.6 Perceived type-instance blurring

Sometimes confusion appears about the distinction between the use of types and instances
in enterprise models. In case of the dynamic perspective taken in by process models, there
is a clean distinction between process types, which are declared by process models, and
process instances, which come into existence by performing the processes, and which can
ex-post be referenced and analyzed with the help of log data (see Sect. 3.4). Accordingly,
process-step elements, events, and control-flow sequences are modeled on the type level,
and are instantiated at process runtime. However, with regard to static model perspectives
of enterprise models, the distinction between conceptually expressed types and instances is
not always equally clear. Actor and resource concepts used in enterprise models sometimes
appear not to fit into the type-instance dichotomy scheme. For the purpose of describing
a software development method based on enterprise models, it thus needs to be examined,
which impact this perceived ambiguity has on the requirements towards the engineering
method.

The described constellation appears, e. g., when a model element representing an actor
group describes both a type of an organizational group, as well as a typical singleton in-
stance referring to a set of actors who form this group in a concrete organization. An
actor group “accounting department”, e. g., can be used in the context of referencing a
functionally determined organizational unit, namely those parts of an organization which
carry out accounting operations. In this sense, “accounting department” is a type of an
organizational subsection, and in concrete organizations, concrete instances of this type
of organizational department can exist. Such instances of the type “accounting depart-
ment” may then be called “accounting department” again, since the singleton instance in
a concrete organization needs no further distinguishing name to be uniquely identified.
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On the conceptual enterprise modeling level, it is thus not necessary to rigidly distinguish
between the notion of the type of an entity and an instance. This resembles the underly-
ing natural language concepts of domain-specific enterprise modeling languages, because
understanding natural language also is not bound to the formal type-instance dichotomy,
which is a methodical tool of abstraction, not a natural property of entities. As a conse-
quence, modeling concepts which represent entities in enterprise models may sometimes
be used in either sense, without making explicit which level of abstraction, i. e., type-level
or instance-level, is intended. In static perspectives of conceptual enterprise modeling,
this distinction often is not necessary and can be blurred, since it is not required for under-
standing the organizational circumstances expressed by the model.

When referencing resources in business process models, again a conflict with the theoreti-
cal type-instance distinction appears to occur, e. g., when modeled resources are accessed
multiple times from different process-steps inside the same process. During these accesses,
areferenced resource may change its semantics from initially representing a resource type,
to representing concrete resources as they will occur to be handled when the business pro-
cess is carried out. This is the case when, e. g., a referenced resource model element
initially represents a type of good to be ordered in a supply-chain process. An “order”
process-step may validly reference this resource to represent the type of product ordered.
During the further course of the process, when the ordered good is dispatched and trans-
ported to the purchaser who initially issued the order, the same resource model element
that was used to represent a type of product when referenced from an “order” process-step,
may now be validly referenced from a “receive good” process-step as a placeholder for the
good instance that gets delivered to the issuer of the order as a result of the order process.

The above examples show that in enterprise models, a clear and formal distinction between
types and instances is not necessarily needed or even intended. By blurring the borders
between types and instances, and simply not applying the theoretical looking-glass of
distinguishing concepts in a type-instance dichotomy, enterprise models gain an increased
level of expressiveness and conceptual understandability for the purposes they are intended
for. It is important to note that drawing a distinction between concepts on a type level,
and concepts on an instance level, is only one possible theoretical perspective, which, in
formal system descriptions, has proven to be useful to specify the semantics for formal
concepts. However, there is nothing special in establishing semantics by using concepts
beyond this formal distinction. The described blurring of the type-instance dichotomy thus
is no deficiency of enterprise models, but a regular phenomenon in expressing conceptual
semantics.

A software engineering method that facilitates the creation of software from enterprise
models, consequentially has the task to translate the natural language semantics of enter-
prise models, in which types and instances may appear to be used interchangeably, to a
system description, which disambiguates this blurring where required. Providing method-
ical means to specify this additional formal semantics avoids the above described theo-
retical problems that appear to exist with enterprise model semantics. The pseudo prob-
lem of a missing type-instance distinction in enterprise models becomes avoided, when
a software development method provides means to explicitly disambiguiate the meaning
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of these elements with respect to the formally required type-instance distinction on the
implementation level.
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4 Requirements towards an enterprise model driven engineering ap-
proach for enterprise information systems

Valuable methodical support for enterprise information system (EIS) engineering has to
meet a set of requirements, which both stem from the features an EIS is intended to sup-
port, and from demands towards the engineering method with regard to how software ar-
chitects and developers are guided by the method in creating such a system. Both aspects
are mutually interwoven, because the methodical procedure of how software functionality
is created, also shapes the features of the resulting system.

EIS have been introduced as software systems, which are specifically tailored to support
collaborative tasks in organizations (see Sect. 1.3). By their very purpose, these systems
operate in a distributed environment, with multiple human and automatic actors interacting
in processes and sharing information objects. To guide users through distributed collab-
orative processes, an EIS must be able to reference formalized process descriptions, it is
thus inherently a “process-aware” information system [DvdAtHOS5]. EIS are central appli-
cations for users to access shared information resources in an organization, therefore they
are also inherently “information aware” in the sense that they differentiate between dif-
ferent types of information resources and provide or invoke different viewers and editors
for these information objects. Besides this, EISs interface to other applications, and are
able to perform automatic process-steps. For interfacing with human users, EIS typically
provide a graphical user interface (GUI).

Derived from the purposes an EIS is intended to serve, and from demands towards the
shape of a methodical development procedure, a set of requirements can be stated which
the implementation of an EIS is expected to fulfill. These requirements are now discussed
in detail.

Requirement 1: Provide effective and efficient methodical guidance

One key task in software development is to handle the complexity of an entire system,
by breaking it down into smaller manageable parts. To make an engineering method ef-
ficiently applicable and increase development productivity, this task should be explicitly
supported by the methodical procedure. The use of a domain-specific modeling language
is one approach in conquering complexity [Gro09a, KTO0S8], because it allows to encapsu-
late complex semantics into abstract modeling concepts, which allows to divide modeled
solution-spaces into different levels of abstraction.

In addition, methodical guidance can be provided through checking of the formal seman-
tics of models used throughout the engineering process, especially by testing whether
models are already completely specified for proceeding with subsequent methodical steps.
If missing model elements can automatically be identified, or combinations of model ele-
ments can be detected as inconsistent, an automatic guiding mechanism can point software
architects and developers to the corresponding places in model editors, and automatically
generate a list of open to-do’s to be performed on incomplete models. This list can lead
architects and developers efficiently through a process of completing the models.
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Any methodical procedure which guides in performing actions by providing conceptual
reflection on how to perform them, and potentially with which tools to perform them,
implicitly aims at an increase in effectiveness and efficiency. Effectiveness means that
the correct use of the method will lead to a software system that fulfills the requirements
specified. Projected onto the concrete task of providing a method for software engineering
based on enterprise models, an effective method must succeed in providing solutions for
formally interpreting the semantics of conceptual enterprise models, to translate them to
technical implementation terms. This covers, e. g., the interpretation of business process
models as workflow descriptions, the disambiguation of actor and resource specifications
for technical purposes, and means for explicating the results of these interpretation steps
in a way they become revisable and editable by human developers.

Aiming at efficiency denotes that the engineering process prospectively needs less devel-
opment efforts than a generic or unspecific approach, or any other already known solution.
This, of course, is a generic justification pattern for any purposefully performed engineer-
ing action, because it is unreasonable to perform an engineering process while a known
alternative would lead to identical results with less efforts. Less efforts in software engi-
neering can be understood as less time spent on developing, using less man power (which
is important, because qualified software engineers are rare to find), and producing results
which are less prone to errors, thus in turn cause lower maintenance cost.

Requirement 2: Support various enterprise modeling languages

The method to be developed should be configurable for using different enterprise modeling
language families, with their associated enterprise modeling languages. This requirement
stems from the research goal of constructing a generic methodical approach, independent
from specific enterprise modeling methods. By including a configuration mechanism,
which allows to plug-in any enterprise modeling languages (EMLs) and corresponding
tools, it is made theoretically clear that the method can be applied independently from
specifics in a concrete enterprise modeling approach.

Adaptability of arbitrary external enterprise models also supports the generic requirement
for efficiency, because the method will be applicable with less effort if involved domain ex-
perts can continue using their familiar enterprise modeling tools, without possibly having
to switch to another enterprise modeling approach.

Requirement 3: Support distributed and heterogeneous architectures

Actors interacting with an EIS, either human users or automatically acting machinery like
software systems, must be considered to be locally distributed and physically placed re-
mote to each other in an EIS environment. The engineering method should thus provide
means to cope with the development of distributed software systems. Spatial distribution
requires the overall EIS to operate concurrently with multiple front-ends which need to
interact and coordinate their behavior. The system architecture thus must consider a mech-
anism to provide the coordination of a distributed system, which is typically solved either
by introducing a central coordination component, or by consulting interaction protocols
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between individual front-end applications which provide common coordination without
a central coordinating instance. Some processes in organizations include movement or
transportation over large distances. In order to support these processes, an EIS should
potentially be accessible through mobile front-end applications, too.

Technological components that are integrated through an EIS in a locally distributed envi-
ronment can consist of heterogeneous system architectures, which make the components
incompatible to each other. An EIS development approach must provide the flexibility to
consult mechanisms for integrating heterogeneous software components, e. g., by incorpo-
rating object request broker (ORB) functionality into the software system created, which
translates semantically integrated data between syntactically incompatible interfaces.

Besides dealing with semantic incompatibilities, the development method also has to take
heterogeneous platform architectures into account, on top of which the developed soft-
ware will run, e. g., different operating systems, hardware platforms, and programming
languages. Due to the distributed and heterogeneous nature of EIS, the need arises to
use a method which supports multiple of these target architectures at the same time. The
method should thus support the development of software for target platforms, which were
not yet specified by the time the method was conceptualized, and it should support the use
of multiple different target platforms simultaneously in one development project.

Requirement 4: Provide multi-user support

According to its distributed nature, an EIS must support multiple users, who operate in
either the same or different concurrently running processes supported by the system.

For the engineering method, this means that functional components for user authentication
and authorization must be made available. Since the system may also be used in parallel
by multiple user simultaneously, multi-tasking and re-entrant behavior also need to be
considered.

Requirement 5: Enable process awareness

In order to provide functionality for supporting organizational business processes, the engi-
neering method should make use of formalized knowledge about the processes supported
by an EIS. This includes knowledge about which actor roles are involved in processes,
which concrete users fulfill these roles, which resources are used, and at which points con-
trol flow is passed between different steps of actions from one user to a potentially other.
From a user’s point of view, an EIS front-end application should provide a comprehensive
overview on the available process types and current process instances the user is involved
in.

Knowledge about these organizational circumstances should be derived from enterprise
models, to have a formalized basis for specifying the requirements towards the system to
be developed.
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Requirement 6: Enable information awareness

Since information access is a relevant kind of action carried out by actors in an organi-
zation, one central feature for EISs is to offer access to available types of information
objects in an organization, and to offer functionality for managing access to information
object instances. In a collaborative environment, information objects may be shared among
multiple users, or may be privately accessible by individuals.

To provide such functionality, several technical components must be accounted for by the
EIS architecture, and consequentially by the engineering method that guides the process
of implementing executable software on top of this architecture. At first, the development
method must make use a type declaration system which allows to describe and differentiate
different information object types.

As a second element, the method must either come with its own mechanism to persistently
store instances of information objects and make them accessible by authorized users, or
should allow to interface to components which are responsible for carrying out these data
management tasks.

A third building block of providing information awareness is to include viewers and edi-
tors to allow users to access information objects and potentially edit them. Again, several
options exist to realize such access, e. g., by internally providing editor software compo-
nents as part of the EIS, or by referencing external viewers or editor applications. These
options are to be explicated by the method.

Requirement 7: Incorporate security aspects

Because an EIS is an important information backbone in an organization, data transmis-
sions and technical communication using the system should be secured against intercep-
tion and spoofing by means of security technologies [BFV*11]. An implementation strat-
egy meta-model should explicate security relevant functionality where possible.

Aspects of security may be considered indispensable features of distributed, multi-user
systems in heterogeneous environments. To explicate this aspect separately, and point out
its importance in an engineering method, is especially relevant for commercial, govern-
mental or large-scale organizations, which can be expected to disclose severe vulnerabili-
ties if using insecure EIS components.

Requirement 8: Support the use of graphical user interfaces

To serve the purpose of efficiently supplementing human work, the functionality offered to
users of an EIS should be accessible through intuitive front-ends with a GUI appropriate
for the device used. The engineering method should support the development of GUI
functionality on a level of abstraction, which closely follows the specifics of the conceptual
domain and relieves developers from time-consuming manual development of GUIs, by
automatically generating default GUI components where possible.
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Requirement 9: Offer automatic processing capabilities

EISs support catrying out processes in organizations. This also includes automatic pro-
cessing steps to be taken into account by the engineering method. While supporting these
is a very general requirement, because all pieces of software are intended to perform au-
tomatic actions in a general sense, there still are variants of architectural design decisions
that come along with the realization of automatic processing steps.

Questions about realizing automatic processing steps cover the range of different program-
ming mechanisms or languages, with which to formulate the desired automatic processing
steps, as well as questions about which physical platform in a distributed environment
should perform an automatic processing step, or which external component is responsible
instead. The method should provide means for explicating these implementation design
decisions.

Requirement 10: Allow for integration of external software components

Interfacing between different software components is a general topic in building dis-
tributed, heterogeneous architectures [Ver96]. An EIS integrates external components to
delegate functionality to.

Interfaces to external components can be established with a wide variety of remote in-
vocation concepts and technologies, such as the use of Simple Object Access Protocol
(SOAP)-based web-services, remote procedure calls, or wrapped command-line invoca-
tions to legacy systems. Options for explicitly choosing between these alternative imple-
mentation approaches should be offered by the method.

Requirement 11: Allow for integration of organization-specific functionality

Depending on the usage scenario, EISs may provide a crucial added value for an organiza-
tion by incorporating specific functionality supporting the organization’s core competitive
advantage. An example would be the integration of location-based geographic data via
mobile devices for a logistic service company, which could, in combination with an ap-
propriate routing mechanism, lead to significant competitive advantages in organizing the
transportation of physical goods.

Generally, a method for EIS development should be open to integrate such organization
specific functionality, to be able to reflect relevant competitive advantages of the organi-
zation in the EIS to be developed. The architecture of an EIS should be designed in a way
which allows for general extensibility of its core functionality by specific features.

Requirement 12: Handle the abstraction gap between enterprise models and imple-
mentation descriptions

A major theoretical issue when dealing with enterprise models on the one hand, and tech-
nical implementation descriptions, such as workflow models or source code, on the other
hand, is the difference in the levels of abstraction [DvdA04]. A business process model
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(BPM), e. g., is located on a conceptually higher degree of abstraction than executable
workflow models or programs. Detail knowledge is left out, and an adequate blurring of
concepts is performed. BPMs are intentionally imprecise, which allows them to offer in-
formation on a scale relevant to handle the modeled parts of an organization, while still
remaining cognitively accessible for human modelers and model recipients (see Sect. 3.6).

The idea of being imprecise, however, is not compatible with technical implementation
models, because in order to provide a machine-executable process description, the im-
plementations need to be precise. A development method that leads from conceptual
enterprise models to executable software thus needs to provide means to disambiguate
knowledge expressed by conceptual models. The decisions about how concepts are disam-
biguated should be made explicit and persistent over time. This way, the design rationales
are traceable at later points in time, and can be used as a basis for automatically generat-
ing executable technical components as part of a code-generation step in the development
method.

Requirement 13: Support performing the ontological turn from a bird’s-eye-view
perspective to an inner system perspective

Enterprise models and implementation models show inherent incompatibilities, not only
with regard to the level of conceptual abstraction of their elements’ semantics, but con-
cerning the ontological perspective they take in when describing systems. Enterprise mod-
els provide descriptions from a bird’s-eye-view overview perspective on an organization.
When creating and editing enterprise models, the modeling stakeholders look onto a de-
scribed organization “from above”. Except for the rules imposed by the abstract syntax of
the modeling languages, there are no a-priori restrictions on what incidents can be mod-
eled, and what content is expressed in the given domain of the modeling languages.

Implementation-level modeling strongly differs from handling this kind of semi-formal
semantics. When modeling implementation technology, a technical system is described
relative to an underlying technical architecture, which imposes structural and dynamic re-
strictions on the system to be implemented. On the implementation level, the execution of
process-descriptions is not understood as a process flow which happens on its own through
the actions of individually operating actors. Instead, the dynamics of a technical system
implementation occur on the background of an execution mechanism, e. g., a workflow-
model interpreter, which defines the operative semantics of a modeled process. To get
from a conceptual overview perspective to a system view which is stated in terms rela-
tive to a given technical architecture, not only a different level of abstraction is required,
but performing an ontological turn in the way how the descriptions are created. Method-
ical guidance should be provided by a development method to perform this turn of the
ontological perspective.

Requirement 14: Incorporate domain experts into the development process

At an early stage in the engineering process, while creating conceptual enterprise models,
domain experts without technical competencies should be able to participate in the con-
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ceptualization of requirements towards the software system. These domain experts may
be prospective future users of the software system, managers, or external consultants.

Incorporating these groups of stakeholders at an early point in time into the development
process, allows for capturing requirements towards the software system as early as pos-
sible, which reduces cost for performing later changes, and lowers the risk to put devel-
opment efforts into functionality which later turns out to be useless. It also fosters the
requirement for strengthening trust among stakeholders in the development process, since
the experts can be sure that their expertise has a relevant influence on the following devel-
opment process.

Requirement 15: Strengthen trust among stakeholders

EISs perform a linking role among members of an organization, and bind them together to
constitute a socio-technical system. They provide an interface function between individual
actors on the one hand, and the collective organization on the other hand. By operating an
EIS, an individual member integrates into the organization, and shapes the organization by
contributing and revising knowledge, or taking decisions that influence the organization
in parts or as a whole. Such an environment requires mutual trust among the participants.
Actors needs to trust that the information and collaboration processes made accessible by
the system are authentic, and that his or her identity as part of the overall organization is
authentically perceived by other participants. Resulting from these individual interests in
authentically participating in the organization, all actors have an interest in the EIS to work
according to a common understanding of the organization.

Using enterprise models commonly understood by all involved participants serves to es-
tablish an agreed notion about how the organization is intended to work, and how an
according EIS should support the individual contributions of the involved stakeholders.
They foster a common understanding of the desired EIS functionality, and thus provide
the basis for mutual trust among all particpants involved, both at development time, and
during the operative use of an EIS.
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5 Enterprise models for model-driven software engineering
5.1 Organization theory concepts in enterprise modeling languages

The concepts and terminology used in enterprise models (EMs) to describe a socio-tech-
nical action system of human stakeholders and resources in an organization consist of a
domain-specific set of terms adopted from organization theory [Daf09, PW09]. EMs in
a narrow sense do not describe technical artifacts, they intentionally lack the terminology
for characterizing details about objects in a technological domain. Some approaches in-
tegrate the notion of enterprise modeling with references to technical concepts specified
by other modeling languages, e. g., by referencing Unified Modeling Language (UML)-
like class diagrams [Fra02, Frallc]. Others try to use the UML as modeling language for
the conceptual enterprise modeling perspectives [Mar00, Rit07]. This way of integrating
conceptual enterprise perspectives and technical views, however, does not provide a sep-
aration of concerns between conceptual action system modeling and technical software
design, and is not followed in the upcoming research work. The notion of the term “enter-
prise model”, as it is applied throughout the elaboration of the Software Engineering with
Enterprise Models (SEEM) method, exclusively focuses on non-technical organizational
descriptions. Any computation-specific or platform-specific information is separated in
individual models and formulated at different stages of the development process by the
responsible stakeholders.

Concepts from organization theory, which are involved in action system descriptions, typ-
ically reside in the semantic areas of actors, resources, interactions, business processes
and strategy. The following subsections provide an overview on the meaning of these
terms with respect to their use in an enterprise model driven software engineering method.

5.1.1 Actors

The notion of actors in an enterprise model resembles a generalization over people who are
involved in performing processes in the organization. From a coarse overview perspective
in enterprise models, an actor may be understood as either a role, which is to be fulfilled by
concrete persons, a group of persons out of which one or more individuals are referenced,
an individual person, or an automatic entity which actively operates during the execution
of business processes in the organization.

A more fine-grained notion of the concept of an actor is given by business-related con-
ceptualizations of organizational roles, positions, groups and individuals [Fralla]. Roles
are placeholders for specific sets of features, which can be associated with either groups
or individuals [AGOS8]. These features can include access rights and further capabilities
which mark a group or an individual as being suitable for performing some specific task
in a business process. Individual persons can be member of one or more groups, and can
fulfill any number of roles. Roles are considered to be fulfilled by a person if either a direct
association between the person and the role exists, or the person is member of a group, the
roles of which are transitively considered to be fulfilled by the individual group members.
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For implementing a software system, it is relevant to know which detail semantics of the
notion of an actor is intended. A software system needs to know whether specific process-
steps are intended to be performed by individual persons in the organization, or whether
suitable persons can be derived, e. g., by their membership to a specific group, or by having
a certain role attached.

Some enterprise modeling languages provide this fine-grained set of concepts to describe
the notion of actors as language concepts in their modeling languages. However, since
these detail distinctions are not generally available with all enterprise modeling approaches,
and because they may even be considered too detailed by responsible enterprise modelers
and intentionally be left out on the conceptual modeling level, a software engineering
method that bases on enterprise models should offer a mechanism to disambiguate the
notion of actors in conceptual models. This allows to reflect the detail notions of roles,
groups and concrete persons on the implementation level, and opens up the possibility to
formally specify further interpretation options for project-specific settings.

5.1.2 Resources

The term “resource” covers a broad range of possible meaning in enterprise modeling. Any
kind of physical entity can be considered a resource, if a relation to a process-step is to be
explicated. Physical resources may be entities that help in performing a process-step, e. g.,
machinery or transportation devices, or may be transformed or consumed in the course of
a process-step, such as raw material or lubricants. Covering the semantics of each of these
concrete physical resource types in depth, would require to develop individual domain-
specific modeling languages [Jun07]. Such a level of detail is, however, not required in
most cases of enterprise modeling, which is why physical resources in most cases are
merely modeled to exist, identified by a name with natural language semantics. Detail
features of the individual physical resources are out of scope of enterprise modeling.

An important other kind of resources in organizations is information. Commonly shared
information binds together multiple, possibly distributed, actors, and operationally con-
trols and synchronizes different activities in an organization. There are multiple different
shapes in which information can occur. It can be stored persistently as electronic or phys-
ical documents, or it can be temporarily generated and used during the execution of busi-
ness processes [WMB™103]. On the conceptual level of enterprise modeling, occurrences
of information are typically explicated using special kinds of resources. Enterprise model-
ing languages typically combine the notion of information types and concrete information
objects, i. e., the same information resource modeling construct may be used to express in-
dividual existing information objects, groups of such objects, or information objects yet to
be created (see Sect. 3.6). The context of using information resource modeling constructs
is usually sufficient for understanding, in which way an information resource is meant to
be used. An effective software engineering method that builds upon enterprise models,
must take this into account and needs to provide a mechanism to disambiguate the notion
of information resources, as it is intentionally blurred on the conceptual level, to concrete
information type and storage specifications.
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Software applications used in semi-automatic or automatic process-steps may also be mod-
eled as resources involved in performing the process-step. If an enterprise modeling lan-
guage does not contain an individual element for software, usually a general resource type
is used to express software in a semi-formal way. On the conceptual level of business pro-
cess models, there usually is no motivation to distinguish further concretions of software,
e. g., whether the application is a traditional desktop application, or whether it is invoked
as web service.

It is important to note that an EIS component itself does not have to be modeled explicitly
as a software application. The existence of an EIS is inherent to the idea of automatically
executing modeled business processes, so the EIS acts as an operative interpreting instance
that manifests the semantics behind the business processes and is the default automatic
actor if not otherwise modeled.

5.1.3 Interactions

Enterprise modeling languages may offer constructs for expressing interactions among en-
tities of different kinds. These may serve to, e. g., explicate relationships among different
actors, and specify potential communication channels by phone, e-mail or other means.

Modeling constructs for interaction may be restricted to the relationships among entities
inside the organization, or may extend to external entities on different scales, such as
customers and business partners, other organizations as grouped entities, or entire markets
and market segments [Fra02].

5.1.4 Business processes

Business process modeling provides the central integrating perspective for enterprise mod-
eling [Wes07, Fral1b]. Business process models refer to model elements from different
perspectives on the enterprise, and relate them to the procedural view with regard to the
process-steps which they play a part in. By looking at the procedures happening, these
elements become presented in a configuration specific to the processes in focus, and con-
textualize knowledge about involved actors and resources, to form a complete description
of an organization.

A set of basic element types is commonly used in business process modeling languages,
with comparable semantics in most languages. One of these fundamental element types is
the notion of a process-step. A process-step is any distinct describable action that is per-
formed as part of a business process, either by human actors, machines, or as a software-
supported interaction between both. Process-steps can be described on various levels of
granularity. This means, a process-step may either describe a small step of action, e. g.,
automatically calculating a numerical value, or a coarse-grained composite action, e. g.,
writing a consultative e-mail to a customer and send it with the help of an e-mail client
application. It is up to the conceptual modelers, which level of granularity to choose, and
to decide whether a mix of multiple levels of granularity in a single BPM makes sense.
When process-step actions are carried out, human actors may be incorporated, either as
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operatively performing personnel, or in supervising management capacities. Also, re-
sources may be involved in performing process-steps, which either may cover physical
resources, information resources, software resources or other process-specific resources.
Business process modeling languages (BPMLs) typically offer language constructs to es-
tablish links from process-step descriptions to actor and resource descriptions, to express
the various types of relationships that can exist among them. By modeling these assign-
ments, BPMs gain a high degree of multi-dimensional integration, and become complex
artifacts of knowledge expression.

Another basic type of model elements in BPMLs are events. Events indicate that some-
thing has happened or that some change of state has occurred. One sub-kind are start-
events, which mark possible entry points into a business process, thus describe occurrences
or conditions, under which an instance of a business process will be executed. Since var-
ious reasons for carrying out business processes are possible, the conceptual modeling
construct of a start-event is specified via a wide range of informal semantics, which de-
scribe the actual meaning of the event in natural language.

Some BPMLs even enforce the use of event elements after every process-step, to explicitly
model the state change that comes with the execution of a process-step. The description
of events during a business process is thus typically related to the description of process-
steps, and the semantics of each non-start event is tightly bound to its surrounding process-
steps. In the most simple case, an event modeled in the course of a business process, only
denotes that the previous process-step has ended. There is no additional semantics attached
to events of this kind. Events with richer semantics may directly refer to possible outcomes
of previous process-steps, e. g., they may model different possible decisions taken during
the process-step, or results calculated. Depending on these outcomes of previous process-
step, the business process may continue with different alternative procedures.

To describe the control flow of a business process, i. €., the logical order in which process-
steps, events and other elements are expected to occur, BPMLs typically provide the lan-
guage construct of a sequence between elements. A sequence in this sense represents the
direct link between two elements in the business process. It if often graphically visualized
in diagrammatic BPMLs as a directed arrow symbol. The term “sequence” does not refer
to a sequential chain of multiple interlinked elements in the context of this work, such a
pattern would rather be referred to as a sub-process.

Besides the three basic element types of process-steps, events and sequences, BPMLs may
also offer language constructs to model additional features of the process control flow,
e. g., the begin and end of parallely executed sub-processes, or the notion of interrupting
events which may occur during the execution of a process or sub-process at an arbitrary
time. Modelers responsible for conceptually expressing BPMs will have to make trade-
offs between complexity and understandability of their models, when they apply these
concepts.

Further advanced BPML conceptualizations suggest additional ways of enriching BPMs
with enterprise specific semantics, e. g., by relating performance indicators and corre-
sponding metrics to process model elements [SFHK11]. These developments show that
the potential of applying enterprise modeling techniques has only yet begun to be pro-
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ductively exploited, and that a variety of further developments in the field of conceptual
enterprise modeling can be expected in the future.

5.1.5 Strategy

The overall motivations for forming an organization are dependent on its strategic goals
and purposes. There may be manifold reasons why an organization is formed or forms
itself. One typical major reason for commercial enterprises is the gain of economic win.
Although most commercial organizations share this major goal in the long run, they differ
strongly in further breaking down this coarse-grained major goal into intermediate and
subsumed sub-goals.

Strategic goals and purposes are long-term properties of a company, which are considered
to remain stable over time [Win02]. They represent the main drivers for an organization’s
activities and its positioning in the social and economic environment. As a consequence,
the structure and weighing of goals, and the explication of means which serve to reach
them, play an important role for the conceptual understanding of enterprise models. En-
terprise modeling languages typically offer modeling constructs to semi-formally explicate
strategic goals and sub-goals [K6h12], interrelations among goals, e. g., refinement, en-
forcement, or substitution, and relations to the business processes, actors and resources,
which serve as means to fulfill the goals.

Other kinds of concepts that are associated with the strategic level of enterprise modeling
are the ability to express value chains [Fral2] or portfolios. This kind of knowledge pro-
vides an integrating roof under which the individual business process models and multiple
partial structural models are integrated to form a comprehensive common whole. For soft-
ware engineering purposes, there is no primary interest to relate to these conceptual strate-
gic elements, although potentially the knowledge derived from this semantic area can also
be incorporated for methodical support, e. g., to prioritize which modeled business pro-
cesses are to be implemented first, or how a version management for future releases should
be planned.

5.2 Model-driven software engineering as an act of interpretation

5.2.1 Conceptual vagueness in domain-specific modeling languages and models

A domain-specific software engineering approach describes how to utilize knowledge in
domain-specific models to generate software from them. Such an approach provides a de-
fined procedure to link from abstract conceptual descriptions of a domain to formal tech-
nical descriptions of a software system. This process cannot be performed as a syntactic
horizontal transformation from one language to the other, because the ontological perspec-
tives of both realms of description, the described reality covered by the domain-specific
models on the one hand, and technical descriptions of implementation components of the
software on the other hand, are typically orthogonal to each other, and reside on different
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levels of terminological abstraction. When enterprise models are consulted as concep-
tual models, the underlying concepts of a domain description are based on organization
theoretical notions of roles, responsibilities, flows, metrics etc. Descriptions of software
systems, on the contrary, operate with terminology determined by underlying execution
paradigms and platform application programming interfaces (APIs) of running software,
which in case of object-oriented system design are, e. g., components, interfaces, classes,
methods, types etc. Getting from one realm of description to the other is not merely an act
of translating between two languages. Instead, it consists of a semantic interpretation of
one realm on the background of the other, to understand the semantics of the conceptual
domain, and design a formal system with this understanding in mind.

Interpreting and understanding statements about a conceptual domain requires knowledge
about the context in which conceptual descriptions have been stated, and about the inten-
tions that have motivated modelers to create the descriptions. Conceptual models can only
be understood with this background knowledge in mind, because the abstractions of the
domain concepts, reflected as modeling language elements and model instance elements,
can only serve to point out relevant distinctions to a domain expert, they are not intended
to explicate and transfer all additional knowledge required to understand the modeled con-
cept in total. This would not even be possible, because any natural or formal language
description has to make a cut in going into details at some point, and presuppose culturally
and socio-biologically acquired background knowledge on the recipient’s side [Put88].
In other words, to understand something already implies to have understood other things
about the context and intentions, which are not explicated. If this was not the case, mean-
ing could not successfully be communicated by verbal statements, models, pictures, etc.,
because every utterance would have to transport knowledge about the entire context and
intentions with it, which would make communication ineffectively complex.

For human understanding, it is the natural mode of thinking to involve background knowl-
edge and contextual information as tacit knowledge [Bau99], which enables the under-
standing of further explications. For this reason, in conceptual modeling, it is reasonable
and efficient to exclude detail information and knowledge that can be presupposed by ex-
pert modelers from the language elements and, as a consequence, from model instances.
Conceptual models are intended to concentrate on expresssing those facts, which describe
the unique and relevant aspects of the circumstances in focus. Conceptual vagueness on
this level of abstraction is intended.

While conceptual vagueness increases the efficiency and effectiveness of conceptual mod-
eling performed by human stakeholders, it stands in conflict with the automatic processing
of the conceptual models for further use in a software engineering procedure. Automatic
processing of content in conceptual models requires data processing techniques, which
operate on semi-formal, and possibly incomplete data. This can be achieved by applying
hints for extracting knowledge from models, and by offering a set of default values to be
used when incomplete information is met.
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5.2.2 Incorporating semi-formal interpretation transformations into model-driven
software engineering with domain-specific models

Domain-specific modeling aims at supporting the interpretation of conceptual models and
the resulting creation of technical system descriptions by automatic or semi-automatic
model transformations and code generation techniques. In a traditional domain-specific
software engineering (DSSE) approach [KTOS], the interpretation of the conceptual se-
mantics in domain-specific models is included as within the artifact generation templates,
and, as a consequence, artifact generation templates for a conceptual domain-specific mod-
eling language (DSML) do not only realize a simple structural mapping from model ele-
ments to artifacts components. Instead, their implementation incorporates domain related
decisions about how to interpret model content in the input models, and at the same time,
how to output software artifacts based on these decisions.

To successfully bridge the gap from the conceptual description realm to deployable ar-
tifacts, model-to-model transformations and artifact generation templates used in DSSE
need to be able to perform semantic interpretation. This is an important difference to
artifact generation procedures based on general purpose modeling languages (GPMLs),
which intentionally keep the modeling language free from specific semantics. The SEEM
method explicitly focuses on this interpretation task, and encapsulates it in a separate me-
thodical step with dedicated model elements that allow to formally express the decisions
taken throughout the process of semantic interpretation.

5.3 Related research and existing approaches

The SEEM method touches multiple research questions in the field of business process
modeling, information technology (IT)-business alignment, and model-based software de-
velopment. It partially overlaps with existing methodical approaches in model-driven soft-
ware engineering (MDSE), and there are software products available, which claim to offer
functionality for executing business process models. To relate the SEEM method to these
existing approaches, representatives of related work are discussed in the following sec-
tions.

5.3.1 Model-driven architecture (MDA)

In its general notion, the term model-driven development (MDD), synonymously called
model-driven software engineering (MDSE), refers to a kind software development method,
which uses models to create software by means of transformation procedures from models
to executable artifacts. Typically, model-driven development methods describe a proce-
dure in which the stages of system conceptualization, system design, and system imple-
mentation, use their specific modeling languages, to provide the semantic expressiveness
required to express design decisions on the corresponding stage. In this general sense, the
proposed SEEM method is a model-driven development method, too.
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Development methods, which consult models for expressing design decisions in a software
development process, but do not come with a continuous chain of model transformations
for creating executable artifacts from the models, can generally be subsumed under the
term Model-Driven Architecture (MDA). MDA approaches use models as means of semi-
formal communication among software architects and developers. Design decisions may
be expressed with equal modeling constructs as in an MDD approach, however, the real-
ization of these decisions is performed with traditional manual implementation techniques.

The general MDD and MDA conceptualizations form two poles of a continuum, between
which any mixture of the approaches can be realized. For example, an MDA procedure
may be enriched with a set of supplementary model transformations, which partially re-
alize a formal transformation relationship between models and artifacts, but still plan for
manual development work to be part of the artifact generation process.

Speaking about MDD and MDA in a general notion does not specify whether domain-
specific modeling languages are used, or so-called general purpose modeling languages.
In a narrower sense, the term MDA is a trademark label of a software development method
issued by the Object Management Group (OMG) organization [Obj03]. This method de-
scribes options for possible realizations of a model-driven development procedure, and
suggests to use general-purpose modeling languages of the UML.

CIM, PIM, and PSM models in MDD The process of spanning the bridge from con-
ceptual models to implemented artifacts in MDA is conceptualized in three stages along
the phases analysis, design and implementation, with each stage having models of an as-
sociated type as its central objects of interest. During the development process, the level
of conceptual abstraction is lowered from stage to stage by transforming a model from a
higher conceptual abstraction level, to a model on a lower level of abstraction.

Models for capturing analysis conceptualizations, describing the problem space of a sys-
tem to be developed, are called computation independent models (CIMs) in the context
of MDA, because they are expected to describe requirements towards the system indepen-
dent from any technical implementation. Models that carry information about the system
design are named platform independent models (PIMs), as they conceptualize architec-
tural options for technically realizing the desired system, without, however, specifying
implementation details. The latter are finally captured for the implementation phase in
platform specific models (PSMs), which reflect technical components of the system to be
developed.

Although the individual models are associated with different levels of abstraction, and,
as a consequence, describe different concepts and objects of interest, the OMG’s MDA
approach suggests to use the same general purpose modeling languages (GPMLs) as lan-
guages for describing concepts on each of the three stages.

The UML as standard modeling language for MDA and MDD The OMG’s MDA
and MDD approaches are intended to complement the UML modeling language specifi-
cation with a procedural framework in which the use of the UML as part of a software
development process is methodically described. As a consequence, the model types of-
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fered by the UML are used in any stage of the methods. Using the UML languages on the
implementation level to express PSMs is useful, because the modeling constructs offered
by the UML typically are generalized abstractions over software technical artifacts, e. g.,
class diagrams mostly contain elements which can directly be mapped onto the constructs
of object-oriented programming languages. This supporting argument for using the UML
still holds true for PIM models, which also describe formal system structures, for which
the UML can be said to be an appropriate choice of modeling language.

However, making use of the UML language family to conceptually represent the knowl-
edge in CIMs, i. e., in models, which intentionally exclude the technical perspective from
there modeled objectives, appears to be one methodical deficiency of the overall MDA
conceptualization. If the aim of a model is to explicitly describe knowledge beyond tech-
nical and formal system structures, the language means for performing this description
should not directly reflect these constructs.

While MDA specifies model types and transformations between them, it does not aim at
fully relying on automatic transformations from CIM to PIM, PSM, and finally to exe-
cutable artifacts. Over time, efforts for maturing MDA to an approach which resembles
a full MDD engineering method, using entirely automated model transformation proce-
dures, have not led to a successful outcome [Obj03]. The use of the general purpose UML
languages has turned out to be too inflexible to capture all knowledge required for a fully
automated transformation procedure. Consequently, the MDA approach typically plans
all involved models to be edited manually and enriched with additional implementation
specific artifacts, e. g., program code.

In MDA, models are used to help structuring the development process, and to express rel-
evant design decisions in a semi-formal way for better cognitive grasping by the involved
developers. However, MDA does not necessarily provide a substantial shift in increasing
development efficiency, because the approach cannot guarantee that the methodical means
for expressing CIMs are sufficient to capture relevant requirements and desired features of
the prospective software system. Depending on the problem space, MDA might be help-
ful, but the method itself does not provide means to estimate, to which extent the use of
GPMLs is efficient for a given requirements scenario.

It thus turns out that the modeling languages for expressing the conceptual and computation-
independent models are a central weak point in the overall approach. This weak point has
been one motivating momentum for an alternative development method conceptualization,
which suggests the use of problem-adequate modeling languages to engage conceptual
models as starting points for software development processes, as it is done by the SEEM
method.

5.3.2 Rational Unified Process (RUP)

To complement the set of modeling languages introduced by the UML with procedural
advice on how to apply these languages in a software development project, the authors who
created the UML originally elaborated a method called Unified Process in parallel to the
UML, which was later renamed to Rational Unified Process (RUP) [Kru03, Rat01, SKOS].
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The name “Rational” refers to the software company, which originally offered the method
as a commercial product.

The RUP is actually a method framework, which does not describe concrete procedural
steps for developing software, but imposes a structure on software development projects
to be filled with technical development procedures. This is achieved by combining two
traditional means for structuring methods, which are methodical perspectives, and me-
thodical steps. Perspectives and steps are structured in an orthogonal way, forming a
two-dimensional framework, in which each perspective is to be considered specifically in
each step.

The RUP combines several concepts of object-oriented software planning, design and im-
plementation in one joined framework [Kru03]. As part of multiple perspectives in each
project phase, the method incorporates the notions of both business modeling, which re-
sembles a general idea of conceptual domain knowledge specification by enterprise model-
ing, and requirements specification, followed by the traditional methodical steps analysis,
design, implementation, test and deployment, and administrative perspectives. The RUP
does not incorporate a methodical link for systematically interconnecting business model-
ing with requirements engineering. Nor does it provide means for systematically relating
implementation-level design-decisions with the rationales behind conceptual elements ap-
pearing in the business models. Both aspects are regarded as separate methodical means,
and interlinking between them is left to development work throughout the phases of the
method.

The RUP has a much wider and more general focus than the SEEM method. It provides
a generic project handling framework including aspects of project management and in-
frastructure planning, into which the SEEM method could be interwoven as methodical
procedure for software development. In this case, SEEM would fill-in traditional notions
of business modeling and requirements engineering, and blur the distinctions between both
of them internally in the RUP framework, while still leaving the entire method applicable.
Further ideas on integrating SEEM into the RUP shall not be discussed at this point.

5.3.3 Domain-specific software engineering

In its basic form, a domain-specific software engineering (DSSE) method requires three
components to be made available prior to applying the method for software generation
[KTOS8]. At first, a domain-specific modeling language is to be developed which provides
means to express knowledge about a domain in a terminology that is well-known to domain
experts. The language must be developed together with appropriate tooling support in form
of a model editor, which allows to create and manipulate model instance in that language.
This editor typically is a diagram editor, which uses graphical facilities to represent model
concepts visually.

The second methodical component required for DSSE is a domain API, which provides
abstractions of both conceptual features of the application to be developed, and technical
features of the operating system and underlying device platform on which the generated
application is intended to be run [KTO8]. These abstractions may come in the form of
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abstract specifications, such as object-oriented interfaces or abstract classes, or as a set of
project-specific API functions, which provide callable building-block functionality of the
system to be developed.

The building-blocks provided by the API are invoked and used by program code that
gets generated in the course of applying the domain-specific model-driven development
method. This is done using code generation templates [CE0O], which are the third kind
of methodical components to be created before the method can entirely be applied. Code
generation templates are programmed artifacts, which combine at least two semantically
orthogonal kinds of program code: an “outer” set of template language constructs, which
gets interpreted by a corresponding template language interpreter, and a set of “inner” tar-
get language fragments, which are wrapped into the template language constructs, and are
assembled to complete program code artifacts according to the statements of the wrapping
template language at build time.

To develop code generation templates, a higher level of software engineering expertise
than for usual programming tasks is required, because code generation templates inten-
tionally mix a meta-level of outer template language statements, and a concrete level of
target programming language artifacts. Creating code generation templates requires a de-
veloper to be able to invent and apply programming patterns, which combine both levels of
abstraction. Traditional development using a single programming language demands from
a developer to be able to anticipate the behavior of a language’s execution mechanism at
runtime, based on the program code as it is written and readable. To make a code genera-
tion mechanism output executable program code, however, a developer has to imagine the
resulting behavior from program code, which does not exist as a static artifact yet, but will
itself be the result of an execution mechanism run at build time.

A well-designed API, which provides suitable abstractions for the application and the
platform, can help reducing the complexity and thus the effort in creating code generation
templates. There is a design trade-off between realizing functionality in the API, or im-
plementing it via fragments in the code generation templates. Code generation templates
and the API will thus most likely have to be iteratively developed, with experiences in cre-
ating one set of components influencing the other. Consequently, if software developers
are available, who are capable of developing both kinds of components simultaneously, a
significant increase in development efficiency can be anticipated.

The proposed SEEM method borrows some fundamental principles from domain-specific
modeling (DSM), while it also enhances traditional DSSE approaches with new solutions.
Concepts common with DSSE are the notion of the separation between a domain-specific
model on a high abstraction level, and implementation artifacts on a lower abstraction
level, which get derived by a defined transformation procedure from the higher level ab-
straction model. In combination with this general approach, the notion of a target archi-
tecture is important in DSSE for defining the transformation procedure [KTOS].

The SEEM method also takes the notion of target architectures into account. As an en-
hancement to DSSE, it offers fine-grained methodical means by which the characteristics
of target architectures are specified. This is done by incorporating the creation of imple-
mentation strategy meta-models for each target architecture in a development project, and
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the instantiation of implementation strategy model instances, which describe concrete tar-
get architecture components and functionality that is to be used in a later artifact generation
process (see Sect. 6.2.3). This approach allows to separate the description of conceptual
domain-specifics in the source DSML model on the one hand, and the specification of de-
tails about the technical target architecture domain in implementation strategy models on
the other hand. Both types of models get interwoven by the mapping model. In combina-
tion, they provide sufficient information to run an artifact generation procedure as the final
development step in the method.

This proposed approach solves the perceived phenomenon of different kinds of concep-
tual and technical domains described in the same domain-specific model, as it can often
be discovered in DSSE projects [LKT04]. In traditional DSSE projects, which are typ-
ically restricted to using a single DSML, knowledge about the conceptual domain, and
details about the technical implementation domain, as a consequence get mixed together
in single domain-specific model instance. Relying on separate implementation strategy
models providing information about the technical target architecture domain as orthogo-
nal domain-specific models, allows to keep the conceptual domain models free from any
implementation details. For the very purpose of the SEEM method, the enterprise mod-
eling language must be expected to contain conceptual domain knowledge only, to allow
to incorporate non-technical domain experts in early phases of the software development
project (see Req. 14), and to be able to use any existing enterprise modeling tools and
methods as the entry point into the method (see Req. 2). In this sense, the enterprise
modeling languages used in SEEM resemble the first sub-type of DSML identified by
[LKTO04], which are DSMLs exclusively based on domain expert’s concepts, without any
implementation details incorporated.

The original DSSE approach considers a single domain-specific model as sufficient basis
for a development procedure, as long as the corresponding modeling language makes sure
to offer all required expressive means to capture knowledge required to generate the entire
target software system as desired. This approach comes with the fundamental drawback
of forcing all kinds of information required to build software into a single model, with a
single underlying, project-specific modeling language. As a consequence, the DSML used
for these purposes cannot offer a clean separation of abstraction layers, because it is re-
quired to mix concepts from multiple perspectives and abstraction levels into one language.
Realizing such a mixture, the language does not distinguish between conceptual domain
knowledge on the one hand, and technically related knowledge about the implementation
domain on the other hand. The potential for reusing at least some aspects of either of the
two domains is low using this approach, because domain-specific conceptual aspects and
technical aspects are interwoven in a single language with respect to a concrete develop-
ment project, which is less likely to be repeatably useful for other development tasks than
distinct conceptualization of the organizational domain and the technical domain.

As a more structured alternative to using a single monolithic transformation for bridging
from conceptual models to implementation models, abstractions over the knowledge that
is incorporated in a single transformation can be made and collected in auxiliary mod-
els, which hold information about how elements from the conceptual models are mapped
to implementation-relevant knowledge. If such auxiliary models are applied, several de-
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sign decisions and implementation contingencies about the software to be developed can
be cleanly explicated by the use of models instead of weaving them into transformation
specification source code.

5.3.4 Enterprise architecture

Research activities around formal and semi-formal descriptions of organizations and en-
terprises have been undertaken since the second half of the 1980s, beginning with [Zac87].
They have evolved as the conceptual foundations, which today underly enterprise model-
ing activities.

Unlike enterprise modeling, enterprise architecture is primarily located on a conceptual,
business-oriented level, and it does not cover aspects, such as, development of formal
languages, modeling tool development, or automatized model analysis [Gro04, Lan(9,
LPW*09]. The originators of enterprise architecture did not envision to use enterprise
architecture description artifacts as the requirements foundations for software engineering
projects. However, enterprise architecture (EA) and enterprise model (EM) share a com-
mon understanding of description perspectives and concepts to describe organizational
structure as well as an organization’s activities.

EA is primarily looking at the business side, discussing means for strategic planning, oper-
ative control, and for governing organizations to establish structure and rules for corporate
behavior. EA research aims at providing managerial tools and guidelines to support shap-
ing an organization in the desired ways.

From an EA perspective, EM provides a bundle of methodical means to guide the tasks
of EA. EM enhances the methodical range by formal language construction and machine-
supported model-editing via software model editors.

5.3.5 Business process model execution

From a theoretical point of view, a number of research questions are addressed when en-
terprise models are consulted for deriving executable software, especially when business
process models are to be interpreted as executable workflow models.

In [ODvdA™09], a method is suggested to convert models in the Business Process Model-
ing Notation (BPMN) to executable Business Process Execution Language (BPEL) work-
flows. Other process modeling languages are not looked at, neither are other enterprise
perspectives, such as organization models. The method is limited to generate BPEL mod-
els, which are to be manually revised by software developers. The SEEM method has
a wider focus and aims at integrating multiple types of enterprise models on a method-
ological level. Since multiple input model types, and also diverse target architectures are
supported by the SEEM method, the method may be configured to read in BPMN models,
and generate BPEL, too. The implementation of the corresponding model transformations
and code generation templates may in such a case be realized, e. g., based upon the work
in [ODvdA*09].
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Another approach for “bridging the gap between business models and workflow speci-
fications” is discussed in [DvdA04]. The central idea of the proposed procedure is to
methodically guide human modelers, i. e., domain stakeholders, architects and developers,
through a process of human modeling actions to transform a given conceptual business
process model to an executable workflow model. The methodical procedure is designed
in a way to ensure that the resulting workflow model fulfills the criterion of the sound-
ness meta-property. With respect to providing guidance for human developers, the SEEM
method shares some fundamental goals of this approach, which are, however, realized
using different concepts (see Sect. 6.4).

In [BBR11], an approach is suggested, which explicates relationships between conceptual
elements in business process models, and workflow elements, through an individual type
of model, called the Business-IT Mapping Model (BIMM). The suggested approach ap-
pears like a specialization of the SEEM method, since the general notion of an explicit
mapping between business-level model concepts and implementation concepts using a
mapping model is also a building block in SEEM. The approach in [BBR11], however, is
not generalized to map to arbitrary variants of target architecture platforms expressed via
implementation strategy meta-models, and the transformation procedure is not method-
ically separated into a dedicated initialization phase with a subsequent code generation
phase.

Enterprise models comprise more than business process models only. This is taken into
account by [ZSZ11], in which a general methodical approach is suggested for developing
software from EMs. The approach uses a specifically adapted conceptual modeling lan-
guage to capture enterprise knowledge. Additionally, several link types are introduced,
instances of which can reference from elements of the conceptual model to elements of
implementation-level modeling languages. Implementation-level elements are not further
described by the proposed approach, it seems to be inherently assumed that existing mod-
eling techniques for technical artifacts can directly be applied for this task. Since no further
intermediating layer exists in the approach between enterprise model concepts and imple-
mentation, the method assumes a single-step transformation remaining to be developed
for realizing a concrete development procedure. By using a specific set of modeling lan-
guages to capture conceptual knowledge, incorporating also a “requirements model” and
a “concepts model”, the approach relies on some specific prerequisies, which are not met
by existing enterprise modeling language in use. This reduces the degree of reusability
of existing enterprise models and enterprise modeling methods. The SEEM method, in
contrast, allows the adaptation of diverse enterprise modeling languages to the method.
It also uses dedicated modeling constructs to explicate relationships between enterprise
model elements and associated implementation strategies, which in turn allows to split the
overall transformation into multiple steps for reducing complexity.

An example of a concrete implementation of a transformation from an existing set of
conceptual enterprise models to executable artifacts is presented in [Jun04]. The approach
identifies syntactic similarities and differences between the Multi-Perspective Enterprise
Modeling (MEMO) family of enterprise modeling languages and standardized workflow
descriptions in the XML Process Definition Language (XPDL) language. Based on this
examination, a set of auxiliary modeling languages is derived, to capture missing detail
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information not represented by MEMO constructs. A code generation procedure weaves
together the information from the original conceptual models with the enhancing technical
detail models, to generate executable XPDL.

One basic assumption, which is taken by [Jun04], is that every model element in con-
ceptual models, especially the constructs describing business process models, can directly
be associated with implementation-level concepts of the XPDL language (“Every process
[...] will be mapped to exactly one activity”, [JunO4] p. 41). While this assumption is
a pragmatic restriction to keep the transformation procedure manageable, it does not take
into account the different levels of abstraction between conceptual enterprise models and
workflow implementations, which, among others, may come into notice by diverse degrees
of granularity. In fact, it is a declared goal of conceptual business process modeling, to
provide a less detailed and coarser grained view on processes than implemented workflows
do. To cope with this fundamental difference between conceptual models and implemen-
tation models, a transformation procedure should provide means to change the level of
granularity between input and output models, too. The approach suggests to perform re-
finements concerning the granularity of business process models on the conceptual level,
by using a decomposition feature for individual process-steps. This resembles the manual
modification of conceptual models to become as fine-grained as needed to a subsequent
direct mapping to implementation steps.

Some research focuses on model-driven configuration of software, rather than model-
driven software development [RMvdAR06, WHMNO7, Zie10]. The fundamental require-
ments arising from transforming from a conceptual description layer to implementation-
related artifacts, however, remain the same in this area of application, this is why the
respective publications do not provide significant additional scientific value compared to
publications about software development from the same groups of authors.

[MLZ08, RMO06] discuss a number of conceptual mismatches between BPMN [Inil 1] and
BPEL [Men06, OASO07], which in the first place is BPMN’s flow oriented process mod-
els, versus BPEL’s block-oriented approach. A flow-oriented way of modeling processes
makes use of interconnecting sequence elements between individual process-members
(i. e., between process-steps and events, if applicable). Using a flow-oriented approach,
alternative branches, e. g., are expressed by more than one outgoing sequence out of a
process-member. Loops, e. g., are expressed by a circular structure of multiple sequences.
In contrast to the flow approach, a block-oriented way of expressing sequence-flows makes
use of specific language constructs, which determine, in what way inner elements of the
block are executed. There are, e. g., I f-blocks to express conditions, Whi le-blocks to
form loops, or F'1ow-blocks to indicate parallelism.

5.3.6 Analyses of business process models

For the purpose of semantically analyzing conceptual enterprise models, especially busi-
ness process models, some fundamental research has been carried out about deriving spe-
cific meta-properties from given model instances. The term “meta-property” is used here
to refer to a proposition which gives reflective information about a model instance. It is
distinguished from the term “property”, which refers to instance values and relationships
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specified in model instances. Deriving such meta-properties about processes and sub-
processes would allow to perform an extensive automatic semantic analysis of enterprise
models as part of the proposed SEEM method, when it comes to semantically analyzing
the conceptual models, in order to derive default implementation strategies from them.

In [FFK*11, vDMvdAO06] and others, the semantic property of soundness is discussed. For
a process model to be sound, means to structurally ensure that any execution instance of
that model will surely reach a termination event in the process model, i. e., every process
runtime instance will surely stop after some time. When a process model is proven to
be sound, it is ensured that no deadlocks can occur during runtime execution, and that
no runtime instances can reach an endless loop. More generally, if focused on partial sub-
processes of entire business processes, the soundness property can guarantee that a specific
event inside an overall process model will be reached, after a specific previous sub-process
has been executed. Detecting this property on input process model instances of the method
may help to automatically decide which implementation strategy to use for the modeled
constellation.

Additional meta-properties of process models, which can be derived via semantic analy-
sis of model instances, are, e. g., reachability and executability, as they are discussed in
[WHMO08a, WHMOS8b]. In future elaborations of the method proposed here, this research
may flow into the development of more fine-grained semantic analyses of conceptual en-
terprise models, in order to provide adequate means for automatically deriving suitable
default implementation strategies associated to modeled business process-steps. In com-
bination with these considerations, quantitative means for measuring structural properties
of business process models [GL06] might also turn out to be effectively applicable.

Specific meta-properties, such as the possibility for conflicts of mutual exclusion, which is
a generalization of the idea of deadlocks, are examined in [SSMB11]. For possible future
enhancements, these approaches can be adapted as validation steps in the overall SEEM
method.

A general notion of “forbidden behavior” is consulted in [SMO06], to gain a theoretical grip
on how correctness of process models can be defined. The proposed approach consists
of a stricter notion of how to define correctness, compared to the notion of soundness,
using a Petri-net-like intermediate language to represent process models originating from
event-driven process chain (EPC) models. With the help of theoretically well-known Petri-
net analysis techniques, aspects of validity in the original EPCs can be verified. Such an
approach in a generalized form may be one candidate for semantically validating busi-
ness processes in an early step of the SEEM method, if applied as implementation of the
enterprise model validity check contained in the methodical procedure (see Sect. 6.4.1).

5.3.7 Incorporating actor and resource models into software engineering
BPMs form the most integrating perspective in enterprise modeling by giving insight into

the executed procedures, and at the same time referencing resources, responsible actors,
and possibly strategic considerations. Besides BPMs, dedicated modeling languages for
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resources and for organizational structure can provide additional information that may be
incorporated into a model-driven software engineering procedure.

A generic resource meta-model to be used for describing resources in the context of an
executable workflow is presented by [zM99]. The work is explicitly motivated by the need
to complement workflow specifications with detailed formal descriptions of resources in-
volved in the workflow, which also covers automatic resources, such as external applica-
tions or production planning and control (PPC) and computer numerical control (CNC)
systems. One of the additions given to traditional simple resource models in [zM99] is the
notion of roles for resources. For the dynamics of how to allocate resource instances to
workflow steps at runtime, the article examines possible options in addition to the static
meta-model.

Integrating different existing kinds of resource descriptions into a unified view is the main
focus of [DDnHS99]. The idea behind the presented approach is to provide a common
abstraction layer for different kinds of resources, which on the one hand provides a unified
interface to reference any resource from workflow descriptions, on the other hand offers a
common conceptual roof to build resource management systems. Resource management
systems efficiently handle the allocation of resources from different sources during work-
flow runtime. The work presents a prototypical approach to develop such a system, and
introduces a resource query language for standardized access to resources. The underlying
resource model assumes a hierarchic structure among resources, introducing additional
resource roles is also discussed by the article.

In [JCO04], a lack of robust standards for integrating organizational perspectives apart from
business processes into workflow applications is identified. It serves as the motivation
to create an implementation-close contribution, which proposes a resource management
framework specifically based on web-service technology. The environment architecture
of the proposed approach is composed of a web service-based workflow execution engine
(e. g., a BPEL interpreter) as the central execution component, which gets enhanced by
a resource binding service, a work queue service for the organization, and a work queue
service for individual agents.

Older foundations of work about the link between software and organizational struc-
ture models can be found in the area of role-based access control (RBAC) authorization
[FKCO07, SFK00]. Multi-user software systems, which make use of RBAC to determine
access-rights to functionality, require configuration about available roles, relationships
among roles (e. g., “includes” or “is part of” relationships), and user accounts with their
association to roles. The information required to configure such systems can be derived
from simple models that allow to specify entities of types role and user, and are capable of
reflecting associated relationships among them.

5.3.8 Strategic models for software engineering
While some research has been carried out on deriving software from business process

models, resource models, and organizational models, those model types of an enterprise
modeling family, which allow for expressing long-term strategic goals and measures, have
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not yet been integrated into model-driven software development processes. Research about
the relationship between conceptually modeled business goals on the one hand, and an
IT oriented view on the other hand, is focused on deriving IT strategy planning and IT
management guidance from business oriented strategy models [BAPC08, GPZ11]. Vice-
versa, incorporating strategic I'T concerns into business strategy modeling is also discussed
by this research. The Strategic Alignment Model (SAM) [HV93] is one of the initiating
conceptualizations for bringing business strategy and IT strategy together.

An integration between IT strategy conceptualizations and model-driven engineering tech-
niques would in principle be possible, e. g., by using information about related strategic
goals to prioritize access to functionality in the user interface presentation, or by deriving
access-rights for the generated functionality, allowing only access to features on a level of
strategic relevance, if a current user is authorized for that level.

5.3.9 Process-centered software engineering environments (PCSEEs)

Software products are available, which give support for making business process models
machine executable. These products do not claim to solve the theoretical issues related to
the mismatch of abstraction levels and viewpoints. Instead, they offer a set of pragmatic
techniques to implement process-aware information systems (PAISs) from modeled busi-
ness processes or workflows. These kinds of development environments constitute a class
of process-centered software engineering environments (PCSEEs) [DvdAtHOS, Gru02],
which are specialized development tools that make use of process specifications to cre-
ate software. Currently, three relevant products are available in the market, which are the
ACTIVITI BPM PLATFORM, the TBPM package, and BONITA OPEN SOLUTION. These
are individually looked at in the following paragraphs. All of these products are avail-
able under open-source licenses, the respective vendors make their businesses by offering
consulting services as the commercial branch of their development activities.

Activiti BPM Platform ACTIVITI [Act, RvL11] is a framework for the JAVA program-
ming language which allows to specify an implementation for BPMN process models
in the JAVA programming language. It provides an API, which interfaces BPMN con-
cepts with object-oriented JAVA elements, and a runtime execution interpreter for execut-
ing JAVA-implemented BPMN processes. ACTIVITY allows to embed this interpreter into
regular JAVA programs, which makes it possible to use BPMN implementations the other
way round, and invoke a BPMN-orchestrated piece of software as part of a JAVA program.

The ACTIVITI framework focuses on the reflection of BPMN concepts into a JAVA API,
and on providing an interpreter engine to execute BPMN processes. Other facilities, such
as a BPMN model editor, or an integrated development environment (IDE), in which man-
ual development work takes place and from which ACTIVITI’s components are invoked,
are not part of the ACTIVITI solution. Resulting from this, ACTIVITI is not bound to a
specific development environment, and can be used with multiple other applications and
IDEs. Since currently, the ECLIPSE IDE [Eclb] is frequently used for many model-based
engineering projects, one default environment for ACTIVITI is ECLIPSE, and there are
plug-ins available which offer an integration of ACTIVITI into ECLIPSE.
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A typical workflow when developing with ACTIVITI starts with editing a BPMN model
from a conceptual point of view with a model editor, which stores the model in the standard
Extensible Markup Language (XML) format for BPMN. Although this model will not
initially contain details about its technical implementation, it has to be designed on a level
of granularity, which allows for associating technical implementations with each process
model element.

In a second step, technical implementations are configured, either by selecting pre-set
functionality from the ACTIVITI API and set parameters as desired, or by providing custom-
written JAVA classes. The classes to be developed implement interfaces or inherit from
superclasses in the ACTIVITI API, which makes them accessible from ACTIVITI’s BPMN
process execution engine. E. g., a JAVA class, which implements a process activity as an
automatically running JAVA fragment, will implement the API interface org.activi-
ti.engine.delegate.JavaDelegate.

Before the BPMN model can be executed this way, information about which JAVA imple-
mentations are intended to reflect the BPMN elements, needs to be added to the BPMN
model at development time. ACTIVITI suggests to add this information as detail anno-
tations in the BPMN model, together with configuration parameters and other technical
detail information for the implementation.

Finally, when JAVA implementations for the individual process-steps are available, and
the BPMN model has been annotated with detail information about how to apply them
for process execution, the annotated model can be interpreted by the ACTIVITI interpreter
engine and executed as a program.

The ACTIVITI solution is specially focused on JAVA development, and requires manual
coding in this language for most use-cases in practical environments. There is no concep-
tual way offered by ACTIVITY, which would allow to bridge the conceptual gap between
BPMN process descriptions and technical software artifacts. Instead, ACTIVITI requires to
create BPMN models on a fine-grained, low abstraction level, and already from a technical
perspective, thinking in terms of web-service invocations and other technically determined
distinctions. Hence, ACTIVITY cannot be categorized as a solution that operates on enter-
prise models in a conceptual sense to turn them to executable software.

jBPM In the same way as ACTIVITI, JBPM [JBol1] is a lightweight JAVA framework,
which in its core consists of a BPMN execution engine, and a JAVA API for providing
implementations for BPMN processes.

Around this set of core functionality, additional components have been created to supple-
ment JBPM development. Among them are an ECLIPSE-based, as well as web-based,
process model editor to edit BPMN 2.0 compatible BPMs. Further supplementary compo-
nents are implementations for WS-HUMANTASK [Orgl0a] services.

The close relationship between JBPM and ACTIVITI results from common development
roots in earlier versions of the JBPM project [Riicl1]. As a consequence, there a few
principal differences between JBPM and ACTIVITI, which is why it is refrained from
further describing JBPM.
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Bonita Open Solution The software product BONITA OPEN SOLUTION [Bon, STH10]
provides a development environment for process-driven software development. It is freely
available as an Open Source Product. BONITA contains an integrated model editor for a
derivate of the BPMN modeling language. Process models created with this editor are
subsequently enriched with detail information about their implementation using a set of
configuration dialogs offered by the BONITA development tools. BONITA provides a mul-
titude of implementation options, which are, however, limited to the options offered by
the BONITA environment. BONITA is primarily targeted to generate form-based web-
applications. Besides these software development capabilities, the environment also sup-
ports process simulation and report generation tasks.

When developing with BONITA, BPMN models are enriched with proprietary additions
to express fine-grained implementation-level semantics. E g., BONITA uses a more differ-
entiated set of resources to represent IT system components. While this is a consequent
approach to realize BONITA’s development method, it breaks the standard compatibility to
BPMN, making the modeling language effectively more complex than the BPMN standard
intends, and requiring a proprietary model editor to make the additional model options ac-
cessible and editable for developers. This monolithic approach of integrating a proprietary
process model editor requires additional learning efforts and causes switching costs, espe-
cially if a collection of process models already exists in another model format, which may
not be possible to be reused.

BONITA does not conceptually distinguish between a business process description and a
workflow model. From BONITA’s perspective, both kinds of models are interchangeable
and identically expressed in the BPMN modeling language. To use such models as a basis
for further software development, the modeler already has to decide for the appropriate
granularity and low level of abstraction to express process-steps appropriate to be inter-
preted as automatable work units. This means, BONITA requires BPMN merely to be used
as a workflow language. BPMN models which express highly abstract conceptual business
process descriptions will not be transformable to executable software using the BONITA
approach.

The development approach realized by BONITA can be reconstructed in terms of the pro-
posed SEEM method. Describing the BONITA approach with SEEM concepts, it uses a
fixed process modeling language with links to other modeling perspectives such as a re-
source view. In combination, both form a specific set of enterprise modeling constructs.
Since BONITA uses its own modeling language, there is no adapter transformation avail-
able to use an external editor, such as in SEEM (see Sect. 6.3.1). Mapping relationships
from conceptual elements in the process model to implementation constructs, which in
SEEM can be freely configured using implementation strategy meta-model constructs (see
Sect. 6.2.3), are kept implicit in BONITA, however, come with a wide variety of config-
uration options to allow to choose different implementation variants. The form-oriented
approach offered by Bonita resembles an application of the SEEM method, which primar-
ily makes use of document-editing interaction with users, and uses form-based editors for
information display and manipulation.
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5.3.10 Self-referential enterprise information systems

Self-referential enterprise information systems are characterized by incorporating enter-
prise models, which describe the processes and business constellations the information
system is meant to support, as editable business objects into the EIS itself [FS09]. One way
to realize such a self-referential system is the use of enterprise models as user-interfaces
to provide interaction mechanisms for invoking functional building blocks and business
objects of the system.

The general architectural conceptualization of a self-referential EIS sees such a system as
an enhanced EIS, combined with the functionality of an enterprise modeling environment
(EME). An EME is a software application which allows for creating, editing and storing
enterprise models, usually by offering multiple model editors, and management function-
ality to store and organize model artifacts. In such an environment, the functional features
offered by the EIS are partially realized based on top of EME functionality, or parts of the
EME are used as GUI for the EIS.

There are no implementations of self-referential EIS yet. The general architectural con-
ceptualization of self-referential EISs, combined with the idea of innovative use-cases
such a system allows to support, yet remain in a state of a scientific proposal for possible
future research on EIS. The method developed in this work is specially suited to build
self-referential EIS, because it already integrates the notion of EMs with EIS at design
time and build time. Runtime integration of EME functionality, which also reflects EM
concepts for its specific purposes, can be described with derived concepts. These could be
made available in a configuration of the method that especially accounts for the develop-
ment of self-referential EIS.

The architectural constellation of a self-referential EIS, understood as a combination of
traditional EIS functionality together with an EME, is depicted in Fig. 14. To indicate the
remaining research questions about how to conceptually interweave the EIS and the EMEs,
the internal relationship between the two is indicated by a double-sided arrow labeled with
“yet unexamined relationship”.

/ Self-referential Enterprise System \

Enterprise Enterprise
Information Modeling
System Environment

yet unexamined
relationship

\_ )

Figure 14: Basic architectural pattern of a self-referential enterprise system (according to
[FS09])
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5.4 Deficiencies of existing approaches and contributions by the proposed method

The sketched approaches for deriving executable software from enterprise models share
some fundamental deficiencies, which are to be overcome by the SEEM method suggested
in the work at hand.

One common problem induced with several of the existing approaches is the use of the
same model artifact both for the representation of conceptual business-level concepts, as
well as for architectural and implementation-level details. This affects all practical soft-
ware products available for BPMN execution, such as ACTIVITI and BONITA. It is a
wrong assumption that refining a model with technical details necessarily means to an-
notate existing conceptual models with that information in-place, i. e., using additional
model elements in the same model. Regarding the fact that implementation technology
is contingent and might be less stable over time than conceptually modeled knowledge,
any dependency between enterprise modeling language constructs and implementation
language constructs reduces maintainability over time. It also limits means to express
different implementation-level design decisions for alternative target architectures, which
may provide distinct technological realization options with different detail information
required. Therefore, it is desirable that a method for enterprise model driven software en-
gineering separates the conceptual business-level knowledge and the technical implemen-
tation details into separate languages, and provides means to loosely couple both levels of
abstractions, without interfering the individual language definitions.

In those cases, where this separation is taken care of, and distinct model artifacts are me-
thodically used to represent different levels of abstraction and viewpoints, new problems
arise regarding the relationships between these models. This is, e. g., the case with the
MDA approach, in which implementation models are created by model transformations
from higher-level business-perspective models. In this constellation, the model transfor-
mations establish implicit dependencies among the different levels of abstraction, which
are usually not back-traceable, after the implementation-level models have been created.
As a consequence, changes that are made to either of the involved models may create in-
consistencies among the different models. When re-running model transformations after
changes to conceptual models have been done, typical problems of overwriting manual
changes have to be conquered [Gul09].

Some approaches, such as [ODvdA+09, RMvdARO6], or the ACTIVITI and BONITA prod-
ucts, assume that a transformation at development time, or an interpretation at runtime, can
be performed in one step. There is no internal structure suggested for the entire transfor-
mation or interpretation. Instead, it is assumed that conceptual source models as input
are transformed by one monolithic step of transformation or interpretation to a deployable
output. This assumption makes no use of the notion of a problem-adequate internal struc-
ture of the transformation, which consists of querying the input models, selecting suitable
implementation building blocks that represent conceptually intended functionality, and
outputting generated artifacts or triggering runtime execution.

Traditional DSSE approaches [Gro09a, KTO08] suggest that any domain-specific software
engineering project requires to design its own new domain-specific language and ac-
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cording model editor. This is necessary, because both the conceptual requirements, and
project-specific technical realization options, have to be reflected simultaneously by the
single DSML used by those aspproaches. As a consequence, cost for domain-specific soft-
ware engineering projects always include the efforts for language and editor development,
which may make up a high fraction of the overall project spendings, given the complexity
of successful language design and the small number of experts available in this field. Users
of a DSML need to be especially trained for each new language, since they cannot neces-
sarily base their capabilities on earlier experiences. This is a relevant drawback not only
in terms of cost and efficiency, but also with respect to the group of people who are able
to utilize the domain-specific modeling language. Experts from other fields than software
development will only be able to efficiently use modeling languages they are acquainted
with. Reusing existing languages instead would not only lower development efforts and
costs to create a new language. It would also reduce the workload required for stakeholders
in conceptual modeling to learn and train the use of a new conceptual modeling language.

Most of the existing approaches are not aware of the fundamental conceptual problems,
that have to be solved when offering a software engineering method which bases on enter-
prise models or other domain-specific types of models. The abstraction gap between con-
ceptual models and technical artifacts are of fundamental ontological nature, and bridging
this gap cannot be achieved with solutions located on the technological abstraction level or
conceptual level separately. While some approaches identify this problem, none of them
succeeds in incorporating solutions for bridging the abstraction gap on the methodolog-
ical level, i. e., by shaping a proposed engineering procedure specifically with the goal
in mind, to provide methodical means for letting humans do the necessary interpretation
steps effectively and efficiently supported by methodical guidance.

While the SEEM method shares a number of fundamental concepts with approaches in
the areas of DSSE, MDA and BPM execution, it delivers several scientific contributions,
which address known problems associated with existing approaches.

Enterprise models offer a set of domain-specific language elements using a terminology
familiar to domain experts, who are people with detail knowledge about the organization
being modeled. The SEEM method allows to reuse existing enterprise modeling languages
with an adapter transformation that interfaces to external EMLs. It also introduces addi-
tional models besides the domain models, which are intended to express how conceptual
elements from enterprise models are to be associated with knowledge about implemen-
tation details. For expressing such associations, a mapping model is used, which allows
to enrich elements from conceptual models with detail information about chosen imple-
mentation strategies, without modifying any constructs of the conceptual language. The
model elements which are referenced as implementation specifications originate from im-
plementation strategy models, which carry implementation detail descriptions that can be
transformed to executable software artifacts by code generation or interpretation mecha-
nisms.

The SEEM method resolves two relevant limitations imposed on other MDSE approaches.
At first, SEEM does not use a single model transformations that directly transforms be-
tween models on different abstraction layers. Instead, in SEEM, a mapping model is ini-
tialized, together with at least one implementation strategy model instance. Elements from
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different levels of abstraction are linked to each other through references in the mapping
model, making the relationships between conceptual elements and implementation strate-
gies explicit and traceable. In other MDSE and DSSE approaches, these relationships
are typically hidden in the execution logic of the model transformations, which transform
models from one level of abstraction to another.

Another aspect of the described approach is the explicit use of implementation strategy
models to reflect technical target architecture components. Such an explication of im-
plementation strategy concepts in separate models outside the transformation templates,
allows for reusing the implementation strategy meta-models as abstract descriptions of tar-
get architectures, and provides structuring means for separating concerns between model
transformations and code generation templates. This gives an improved overview on the
involved transformation templates and their functionality, which in turn leads to a more
efficient and less error-prone software developing process (see Req. 1), also with implica-
tions on the ability to realize security-relevant functionality safely and certifiable as part
of a reproducibly described engineering process (see Req. 7).

The problem of bridging the abstraction gap between conceptual enterprise models and
implementation descriptions is addressed by explicating an internal structure of the model
transformation from the conceptual models to executable artifacts. This way, the overall
model transformation no longer remains seen as a monolithic black box, which “mag-
ically” outputs valid implementation artifacts. This kind of monolithic transformation
would quickly become too complex to be efficiently maintained in development projects.
Also, a single transformation necessarily has to mix interpretation functionality applied to
the conceptual input models, with output functionality for generating software artifacts.
This lack of separation of duties is overcome in the SEEM method by structuring the de-
velopment process into multiple phases.

The SEEM method splits up the structure, on which the development procedure operates,
into three distinct model types. These are the input enterprise models, the implementa-
tion strategy models containing implementation strategies about how to realize specific
functionality on concrete systems, and the mapping model, which explicates relationships
between the two earlier with dedicated mapping concepts. The process of transforming
conceptual models to implementation artifacts is also divided into three separate phases.
After the adapter transformation has been run to interface the conceptual input models to
the method, the initialization transformation performs a semantic interpretation of the in-
put enterprise models to generate a populated default implementation strategy model and
corresponding default mapping model entries. Once these three models are available, and
have undergone an optional manual review, the code generation transformation creates the
corresponding software artifacts, which make up the final software system.

The method proposes a framework of implementation strategy types, covering questions
about, e. g., how to implement process-steps, how to represent resources, or how to under-
stand the notion of actors. While most of these questions have individually been addressed
in existing research about how to make conceptual models implementable (see Sect. 5.3),
the SEEM method unifies these approaches by making use of the dedicated abstraction of
the implementation strategy mapping pattern.
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Model validity checks are interwoven into the method, to provide additional guidance for
human modelers and developers. This is done by automatically detecting locations in the
involved models, which are underspecified or ambiguous. If such a case is detected by
a validity check, the method falls back to an earlier step, and optionally points human
modelers and developers to erroneous locations in the edited models. These steps iterate
until the validity checks have passed. Including this automatic guidance of manual edit-
ing activities into the development procedure contributes to an increase in development
efficiency enabled by the SEEM method.
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Part II1

A Domain-Specific Method for
Model-Driven Software Engineering
with Enterprise Models

All those signs I knew what they meant
Some things you can’t invent
Some get made and some get sent

Coldplay, “Speed Of Sound” from the album “X&Y”, 2005

6 Method constituents

The artifacts that are used throughout the method are briefly described in the following to
introduce them before the procedural method description in Sect. 7.1. First, an overview
is given in Sect. 6.1 to provide an understanding of each component’s role as part of the
overall method. Starting with Sect. 6.2, the involved artifacts are closer looked at. The
following Sect. 7.1 will describe the procedures for using the introduced components.

6.1 Overview

Before the components of the method will be explained in detail, the method is described
from a coarse overview perspective to give an understanding of the main architectural
drivers that form the central principles behind the development method. With the relations
among the major building blocks of the method in mind, the upcoming detailed descrip-
tions will be easier to comprehend.

The method involves a set of modeling languages, model instances, model transformations,
and validity checks. An external enterprise modeling language (EML) and corresponding
tool is used to edit enterprise models.

6.1.1 Internal enterprise model representation language

The method uses an internal, simplified enterprise modeling language called extracted
enterprise model (EEM), into which the input enterprise models get translated before ap-
plying further steps of the method. With the help of this intermediate enterprise model
representation language, the method becomes adaptable to multiple enterprise modeling
languages through one single model transformation which is executed initially when ap-
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plying the method. All subsequent methodical steps remain independent from the original
enterprise modeling languages used, since they exclusively operate on the internal EEM
representation. The EEM representation language is fully introduced in Sect. 6.2.1.

6.1.2 Implementation strategies and mapping model

Implementation strategies represent possible options for creating output artifacts, which
will be evaluated during the code generation step. This way, implementation strategies
offer an additional abstraction layer for capturing design decisions, and decouple the code
generation process from analyzing the conceptual input models. Implementation strategies
will be thoroughly discussed in Sect. 6.2.3.

The purpose of the mapping model is to bind conceptual elements from enterprise mod-
els, represented in their EEM form, to implementation strategy descriptions. A mapping
model consists of a list of mapping entries. Each mapping entry references one element
from the conceptual input enterprise model, and one or more implementation strategy el-
ements from an implementation strategy model. Together, both the conceptual semantics
and the technical implementation description, provide sufficient information to control the
subsequent step of automatic code generation for creating executable and deployable arti-
facts. The mapping model language will be explained in detail in Sect. 6.2.2.

6.1.3 Model transformations

Model transformations are used in different steps of the method, both for adapting the in-
put enterprise modeling languages to the method, and for generating initial instances of
the mapping model and referenced implementation strategy models. The model transfor-
mations used by the method are introduced in depth in Sect. 6.3.

6.1.4 Validity checks

Model validation rules are used to perform validity checks at specified points in the
method. They can automatically collect valuable hints for software architects and devel-
opers, to determine at which points models have to be revisited and probably be completed
or disambiguated manually. Validity checking steps as parts of the method are discussed
thoroughly in Sect. 6.4.

6.1.5 APIs

General architectural features of an enterprise information system (EIS) are encapsulated
by an application programming interface (API) which provides functions and data struc-
tures intended to be used by the generated artifacts. E. g., generated code may invoke
function on objects provided by the domain API, or it may declare constructs which in-
herit from abstract super-constructs declared by the API.
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A domain API which has prototypically been developed to demonstrate the use of this
method is described in detail in Sect. 6.5.

6.1.6 Code generation templates

A set of code generation templates for creating source code and other implementation
artifacts is finally fed with the configured mapping model and its mapping entries refer-
encing both enterprise model elements as well as implementation strategy descriptions.
With these conceptualizations at hand, the code generation templates have enough detail
information to generate complete, executable or otherwise deployable artifacts. It is also
possible to interpret this structure to execute it at runtime, which is an equivalent imple-
mentation option not further looked at throughout the remaining elaboration of the method.

Code generation templates are responsible for transforming implementation strategy de-
scriptions, which typically reside on a level of implementation-independent, yet compu-
tation-dependent abstractions, into technical platform-dependent artifacts which rely on
concrete technology to implement the desired functionality. The code generation tem-
plates thus are relating to concrete technologies, which are available on the respective
target architectures. For each target architecture, code generation templates have to be
developed individually.

Code generation templates are further discussed in Sect. 6.3.3.

6.1.7 Tooling support

Besides describing conceptual components of a method and giving insight into the proce-
dural sequences which are performed to apply a method, a fully elaborated method also
takes care about tooling support to provide software for applying the method.

Tooling support is consulted to provide model editors for manually editing model in-
stances, to persistently store model instances throughout the application of the method,
to invoke model transformation and validity checking engines, and to host a code genera-
tion template execution engine to finally output deployable artifacts.

A prototypical environment which supports these features is presented in Sect. 12.3.

6.1.8 Overview on the methodical procedure

A methodical description of how to apply the above components in a defined procedure is
essential to the engineering method.

In its original form, the Software Engineering with Enterprise Models (SEEM) method is
open to be used with any enterprise modeling language, and with any set of target platform
architectures. Consequentially, to apply the method, it has to be tailored at two ends: the
chosen enterprise modeling language has to be adapted at the input-side of the method by
developing a suitable adapter transformation, and implementation strategy modeling lan-
guages, as well as code generation templates, have to be created for each target platform.
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Details about these configuration procedures are described in Sect. 7.2 and Sect. 7.3. For
the purposes of the subsequent overview description it can be assumed that the method has
already been configured at both ends.

Provided the method has been prepared in this way, applying it for engineering an EIS
can be structured into seven steps, with the possibility to iterate back to previous phases at
specific points if preconditions for performing further steps are not met yet. The individual
steps are:

1. Manually create and edit enterprise models

2. Automatically transform enterprise models to an internal representation for further
processing

3. Automatically check for validity of the enterprise model representation, go back to
phase 1 if the model is not considered complete yet

4. Automatically initialize a mapping model and corresponding implementation strat-
egy models with reasonable default elements according to a semantic interpretation
of the enterprise model representation

5. Optionally, manually review the initialized mapping model and implementation
strategy models and replace defaults with more appropriate interpretations where
necessary

6. Automatically check for validity of the mapping and implementation strategy mod-
els, go back to the previous phase if these models are not complete yet

7. Automatically generate application code or configuration files

Fig. 15 shows an overview on the steps that are performed when applying the method.

The fundamental purposes of the individual steps are described in detail in Sect. 7. They
are now sketched to gain an initial understanding of the overall procedure.

Step 1: Create and edit enterprise models The first task to enable starting the engi-
neering procedure is the creation of enterprise models, which describe all relevant aspects
of the modeled organization on a conceptual, computation- and platform-independent way.
The task of creating enterprise models is usually performed by stakeholders involved in
the modeled organization, or by external analysts. Software experts should accompany
this group in order to guide the conceptual modeling process in a way that the models
express relevant information exploitable for further processing.

Sect. 7.1.1 takes a close look at this initial step of applying the method.

Step 2: Transform enterprise models to a internal representation The second step
is to invoke an adapter model-to-model transformation which transforms the enterprise
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1. Create and edit
enterprise models
2. Transform to
internal representation
3. Check validity of
revise if internal representation
incomplete
4. Initialize or update
mapping model and imple-

mentation strategy models

5. Manually edit
mapping model and imple-

mentation strategy models

6. Check validity of
mapping and implementation

revise if strategy models
incomplete
7. Generate deployable
artifacts

Figure 15: Steps performed when applying the method

models created using external modeling languages and tools. As a result of this trans-
formation, the contents of the original enterprise models are expressed as a single model
artifact in an internal enterprise modeling language called EEM, which undergoes further
processing in the method.

The transformation and modeling languages involved in this step are explained in detail in
Sect. 7.1.2.

Step 3: Check validity of the enterprise model representation The enterprise models
in their internal representation can automatically be checked for validity by invoking a
model checking script. This step supports an early detection of conceptual ambiguities or
incomplete specifications before implementation decisions are taken. It allows to iterate
back to step 1, if problems with the conceptual models are found.

The validity checking step is further explained in Sect. 7.1.3.

Step 4: Initialize or update the mapping model and the implementation strategy
models The mapping model is central to the method, it combines conceptual descrip-
tions from the enterprise models with implementation strategy descriptions. When this
step is performed for the first time, it automatically initializes a new mapping model with
all entries that can automatically be derived from the enterprise model concepts. This
includes guessing possible default values for implementation strategies which match the
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conceptual elements best. This step provides a major potential for increasing development
efficiency, since it can take away uncreative, regularly repeated work from software archi-
tects and developers. If it is performed multiple times, in subsequent iterations an update
is performed on existing mapping models which preserves existing entries.

The initialization procedure is discussed in detail in Sect. 7.1.4.

Step 5: Manually edit the mapping model and the implementation strategy models
After the automatic initialization, a phase of manual reviewing of the generated models is
accounted for in the method. While for simple design decisions the automatic initialization
procedure might have been able to select appropriate implementation strategies, complex
functionality will have to be designed by software architects and developers.

Sect. 7.1.5 elucidates the details of this step.

Step 6: Check validity of the mapping model and the implementation strategy mod-
els After the mapping model has both been automatically initialized, and optionally been
manually edited, a validity check comparable to step 2 is applied, which tests whether the
mapping model misses any specifications, or if some model elements are configured in an
ambiguous way. In case one of these tests fails, the method iterates back to the previous
step.

Details about the validity checking of the mapping model and its accompanied implemen-
tation strategy models are covered by Sect. 7.1.6.

Step 7: Generate deployable artifacts Finally, code generation techniques as they
are known from domain-specific software engineering (DSSE) approaches are applied to
the set of models, which has been made available by the previous methodical steps. They
output software artifacts to be deployed as running software. These artifacts may either be
source code, or configuration components of any kind that describe a software system as
desired.

Details on artifact generation are discussed in Sect. 7.1.7.

6.2 Models and modeling languages

When applying the method, three kinds of models are used to carry out the enterprise
model driven software engineering procedure. These three kinds are enterprise models
(EMs), a mapping model, and implementation strategy models. Other model types may be
referenced as supplementary descriptions of technical artifacts, e. g., UML class diagrams,
but these are not fundamental components of the method. One or more EMs artifacts
serve as the starting point, from which a single EM representation called EEM will be
derived as one single model artifact. The elements contained in the EEM will be referenced
from entries in a mapping model, which associate elements from implementation strategy
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models with the referenced concept. The model types involved in this methodical setting
are discussed in detail in the following subsections.

6.2.1 Enterprise models and their internal representation

EMs (see Sect. 1.2) are made available at the start of the EIS software engineering project
by stakeholders of the modeled organization, or by external analysts who document their
view on the organization with enterprise models. When creating enterprise models, these
domain experts should be aided by software architects, who guide the use of enterprise
modeling languages in a way the knowledge contained in the models can later efficiently
be interpreted for software development. No technical details or implementation specific
design decisions are taken by the software experts at this point yet, they only give ad-
vice in how to express conceptual knowledge with the existing language means, to reduce
the need for disambiguation and detail specification activities in the subsequent software
development process.

Enterprise models can be created with any EML for which semantic tooling support is
available, for example ARCHIMATE [Lan09] using the CORPORATE MODELER SUITE
[cL], the ARIS language [Sch02b] with the ARIS TOOLSET [Sof], or the MEMO lan-
guage family [Fral2] supported by the MEMOCENTERNG application [GF10, Res]. En-
terprise models can also be created using custom domain-specific conceptual modeling
languages describing organizational circumstances and procedures. Demanding semantic
tooling support means to use model editors which internally reflect the meta-concepts of
the modeling language as elements out of which model instances are formed. The editors
thus must not be limited to offer a graphical model representation for editing, but they
need to contain knowledge about the structure of the applied modeling language, and are
expected to internally store model representations in the abstract syntax format of the mod-
eling language. When models are available in this format, they can further be processed,
e. g., by model transformations.

Enterprise models may be stored as a single technical artifact, or as a collection of interre-
lated models, which each may be formulated in a different EML for different perspectives
on an organization. For this reason, the terminology introduced with the method often
speaks of enterprise models and enterprise modeling languages in plural, while single
model artifacts may also be used.

To make use of various EMLs as conceptual source models for the engineering method,
the method gets initially configured for accessing the information contained in the model
instance artifacts of the chosen language. This is done via an adapter transformation, which
is initially run to translate the original enterprise models into the EEM format, which is
used for further processing. This way, any set of EMLs can be configured to work with
the method, as soon as a corresponding adapter transformation is provided. After the
EEM model representation is available, subsequent steps of the method can base on the
same syntactic representation for enterprise models, and those automatic processing steps,
which are subsequently performed, become reusable for different EML. Sect. 6.3.1 looks
at the adapter transformation in detail, the overall configuration process to adapt enterprise
modeling languages to the method is described in Sect. 7.2.
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The EEM language offers a set of fundamental enterprise model element types, specifically
tailored to reflect the conceptual information required for carrying out the software engi-
neering method. The adapter transformation is responsible for creating model elements
in this language and fill their attribute values with information derived from the original
enterprise models. Models in the EEM format are not intended to be edited manually,
neither by conceptual modeling stakeholders, nor by software architects or developers.
Any changes to the conceptual models are made to the original enterprise models, and the
EEM representation is automatically re-created when a new enterprise model version is
available.

The language is specifically designed to formally provide all information required for the
subsequent engineering process. This may lead to a situation where a detail concept is
needed to be specified in the EEM model, although no corresponding language element
in the source EMLs exists. In such cases, the semi-formal nature of enterprise models
often allows to incorporate detail information via generic model elements, such as com-
ment texts or key-value-tags associated with model elements. Using these model elements
allows for specifying conceptual details, for which the original enterprise modeling lan-
guage does not provide its own semantic constructs. Comment texts or tagged values can
instead be used in the original enterprise modeling languages to encode any additional
information. The adapter transformation is in charge for parsing this information and to
propagate it to the corresponding model element in the EEM model representation. It is
part of the configuration process for adapting a specific enterprise modeling language, to
explicate the set of detail information entries and how their are included in the enterprise
models. This is supposed to be done in an end-user documentation format, to allow all
involved stakeholders, who take part in enterprise modeling activities, to understand the
semi-formal extensions and to apply them where desired.

Since the EEM representation is derived via a horizontal model transformation, which
performs a syntactic transformation from one enterprise modeling language to another,
both kinds of models reside on the same level of abstraction and only differ in structure
and labeling. Therefore, they are both referenced as “enterprise models” in the method
description, where a distinction between original enterprise models and derived extracted
representation is unnecessary.

The modeling language, in which the EEM representation is formulated, provides basic
types for all fundamental enterprise modeling concepts. This includes process modeling
concepts, elements to express organizational roles and actors with their structural inter-
relations, and resource modeling constructs with associated resource access explications.
Although it includes all necessary constructs for further proceeding with a software en-
gineering process, the language is kept as simple as possible, which reduces efforts for
adapting enterprise modeling languages, and for further processing implementations. It
only contains constructs to hold information required for the EIS engineering process.

For the same reason, the method does not specify a visual syntax for the EEM language.
This is not necessary, because the model instances are not intended to be edited by humans.
Interactive model editing and diagram visualization is only provided optionally on the
tooling level for debugging purposes, see Sect. 12.3.
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The EEM language is defined via a meta-model formulated in the MEMO Meta-Modeling
Language (MML). This meta-modeling language is especially suited for expressing meta-
models of conceptual domain-specific languages [Fra08]. Fig. 16 shows the entire EEM
meta-model, individual components are focused subsequently.
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Figure 16: Entire meta-model for internal enterprise model representation

The language provides a core set of enterprise model element types as they can be found in
most enterprise modeling languages. The concepts might be named differently in diverse
languages, but the EEM language provides a generalization over multiple enterprise mod-
eling languages to generally represent enterprise models in a stripped-down, simplified
structure.

The meta-concepts of the EEM language are combined in a single meta-model, forming
one modeling language which covers the relevant perspectives on an enterprise, including
the process perspective, actor perspective with responsibilities and managerial authorities,
as well as a resource perspective. Since all perspectives are integrated into one modeling
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language, a model instance in the EEM language is a single technical artifact, which is
efficient to handle for further processing by model transformations as part of the method.

Classes EMObject, EMObjectNamed, and EMTag Elements of the EEM language
are derived from two abstract superclasses EMObject and EMOb jectNamed, which
provide declarations for the attribute fields most model elements have in common. The
name EMODb ject generally stands for “Enterprise Model Object”. The MML declarations
of these meta-classes are depicted in Fig. 17.

EMTag
id : String name : String
value : String value : String

comment : String

EMObjectNamed
name : String

Figure 17: Abstract superclasses defining common attributes of elements

Attribute 1d (String) To reference model elements after re-generation of an EEM in-
stance, an ID can be utilized which gets initialized by the adapter transformation with a
unique string value that is dependent on the original enterprise model element and will be
equal in subsequent transformations. This mechanism is currently not used by the proto-
type implementation of the adapter transformation, because the internal way of referencing
model elements from other model instances (implemented by the Eclipse Modeling Frame-
work (EMF), see Sect. 12.3) allows references to persist after re-generation of a referenced
model, as long as no substantial changes had been made to its structure.

Attribute value (String) This attribute is used depending on the concrete subclass type
for different purposes and explained together with the description of these classes, if ap-
plicable.

Attribute comment (String) The comment attribute is intended to copy any comment
or description text that is attached to original enterprise model elements, for debugging and
testing purposes if the EEM model is manually reviewed by a developer. This attribute has
no dedicated function in the method.

Attribute name (String) Most model elements will be named, this is why the name
attribute is incorporated. To still be able to declare meta-classes without names, this is
done via the separate abstract superclass EMOb jectNamed.
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Class EMTag References from class EMObject to class EMTag allow for attending
tagged values to extend the language. As common to general tagging mechanisms, tags
are composed of a name and value attribute pair, which both hold values of type string.

Actor perspective To reflect the notion of roles and actors in the EEM language, a basic
set of meta-classes to model actors and their relationships is part of the meta-model. The
corresponding excerpts of the MML meta-class diagram are shown in Fig. 18.
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Figure 18: Meta-constructs to model the actor perspective

The abstract superclass Actor stands for any kind of actor, either a group role, an indi-
vidual role, or a concrete user. Whether an actor represents an individual or a group, is
further distinguished by the use of concrete subclasses of Actor, ActorIndividual
or ActorGroup.

Whether a modeled actor is intended to represent an organizational role or to stand for a
concrete person in the organization, is subject to further interpretation steps in the method.
This distinction can be expressed by associating suitable implementation strategies to the
conceptually modeled actors in the mapping model.

Relationship subordinate/superordinate The subordinate/superor-—
dinate relationship expresses a hierarchy among actors. It uses many-to-many cardi-
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nalities, because any actor may in principle be subordinated to multiple other actors, while
at the same time be superordinate to multiple others.

Relationship memberOf/hasMember The membership of an individual actor in an
actor group is expressed by the memberOf /hasMember relationship. This relationship
is again bidirectional and has many-to-many cardinalities, because in principle, any group
can have multiple members, and every individual can be member of multiple groups.

Relationship includes/includedBy To express a containment relationship among
groups, the includes/includedBy relationship is part of the meta-model. It allows
to specify which group is part of another. The EEM validity check (see Sect. 6.4.1) should
make sure that this transitive relationship is not populated with instances that form a circle.

Two more relationships interlink the actor perspective with the process perspective. They
express which actors are involved in performing a process.

Relationship performs/performedBy By this relationship, a link between the pro-
cess perspective and the actor perspective is expressed, which indicates which actors are
operatively involved in performing a process-step. This relationship has many-to-many
cardinalities, because any actor is potentially carrying out more than process-step, and
there may be process-steps which require more than one actor to perform them, e. g.,
real-time communication among multiple actors.

Relationship owns/ownedBy In parallel to the performs/performedBy relation-
ship, the owns/ownedBy relationship associates processes with actors, which hold man-
agerial responsibilities for the process-step (process owners). Again, this is modeled as
a many-to-many relationship, because any actor may generally hold managerial responsi-
bility for more than one process-step, while in some cases one process-step might also be
reasonably associated with more than one owning actors.

Actor types are referenced at one more point in a bidirectional relationship, as part of
the ternary relationship ResourceAccess, which combines the actor perspective, the
process perspective, and the resource perspective in describing which resources are incor-
porated in a process-step, and by whom.

Process perspective Meta-model constructs to reflect the process modeling perspective
are displayed in Fig. 19. There are four meta-classes which make up the rudimentary
set for describing processes. Class ProcessMember is the abstract superclass for both
Process elements, as active procedural steps within the process model, and Event
elements, which reflect state changes, externally triggered occurrences, etc. Processes
may themselves be described as composed out of multiple sub-processes instead of being
single atomistic process-steps.
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Figure 19: Meta-constructs to model the process perspective

Relationships from/outgoing and to/ingoing All process-members are inter-
connected via Sequence elements. One single sequence element specifies a flow in
control from one process-member to another, associated via the references £ rom and to.
There may be multiple ingoing sequence elements per process-member, as well as multiple
outgoing ones.

Attributes ProcessMember.outgoingParallel and ProcessMember.ingo—
ingParallel The modes of how to interpret the occurrence of multiple ingoing or
outgoing sequences are controlled by the boolean attributes outgoingParallel and
ingoingParallel of class ProcessMember. There are no explicit process elements
to distinguish between parallel splits or alternative decisions. Instead, this semantics is ex-
pressed via the attribute outgoingParallel to the process-member from which mul-
tiple sequences go out. In cases where outgoingParallel is set to true, multiple
outgoing sequence from a process-member are interpreted as a parallel split, while other-
wise an alternative decision is realized. Alternative decisions typically are taken based on
output information objects of the process-member from which the sequences go out.

Attribute Sequence.condition In cases where multiple outgoing sequences are
considered as alternative branches to be taken depending on a decision, the condition
under which a sequence is followed may be attached as an expression string via the at-
tribute condition. Although the actual implementation strategy for deciding which
sequence to follow is determined by ConditionImplementation elements in the
mapping model, the condition string given in the conceptual model can be used as hint
for the initialization transformation which condition implementation to choose as default.
In the conceptual model, the condition may be given as a formal condition term, or may
consist of symbol values which indicate a decision taken in the previous process-steps,
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e. g., “yes”, “no” or “canceled”.

Attribute Sequence.inProcess (Process) The complex attribute inProcess of
a Sequence element points to a parent process element to which this sequence is as-
sociated. The same process-member may occur in multiple processes, because process-
members in conceptual models describe types, which can be instantiated multiple times in
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one or multiple processes. Therefore, the sequences, which together make up the actual
description of a process structure, are bound to specific parent processes and distinguish
between multiple different process structures a process-member might occur in. Process
members never have a parent process themselves, they are embedded into a parent process
by connecting them either to the £ rom attribute or to the t o attribute of a sequence, which
is indicated to be in the parent process by referencing it with its inProcess attribute.

Usually, the reference from Sequence to Process would be expressed as a relation-
ship, not as a complex attribute, in the model. inProcess has been incorporated as a
complex attribute instead for technical reasons, because by using a complex attribute, the
other outgoing relationships of Sequence can automatically be detected as describing
the end-points of an association class, which Sequence is modeled as. To provide a
streamlined handling of the MML meta-model describing the EEM language by its corre-
sponding model editor, inProcess is declared as an attribute.

Attribute Process. kind (Enumeration) The attribute kind of meta-class Process
allows to express different characteristics of process-steps, depending on whether on the
conceptual level they are intended to be performed manually, semi-automatic with soft-
ware support, or fully automatic.

Manual steps are marked with the attribute value MANUAL, and are typically performed by
human actors without the help of the EIS, i. e., with a minimum of interaction between the
user and the software system, only to indicate which tasks are to be done and which are
completed.

Semi-automatic process-steps are marked with the attribute value SEMIAUTOMATIC and
are the main kind of process-steps which gain support through the front-end applications
of an EIS. They are typically implemented by software components that interactively mod-
erate between the user and the EIS application, or by external applications invoked by the
EIS.

Fully automatic conceptual process-steps refer to the invocation of any automatic, pro-
grammed functionality of a software system. This covers either the invocation of exist-
ing functionality in external systems, or newly developed functionality, which gets pro-
grammed as manual development work in the engineering process.

Attribute Process. topLevel (Boolean) Process elements need not considered to
be atomic, they can again be refined as process models, i. e., there are subprocesses de-
scribed by Sequence elements which have the Process element set as their inPro—
cess attribute.

Those Process elements which represent top-level processes, i. e., processes which
themselves are not contained in any other process model, can explicitly be marked setting
the topLevel attribute to true. Typically, those processes represent the granularity
of entire business process models or single process diagrams derived from the original
enterprise models.
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Attribute Event . kind (Enumeration) The kind attribute attached to the Event type
allows to refine the semantics of events to express whether events are intended to be start
events or stop events of a process. This semantics allows to better validate the structural
embedding of events in a process, since start events can be validated to not have ingoing
sequences, while stop events are constrained to have no outgoing sequences.

Relationship waitedFor/waitedBy The reflexive bidirectional relationship wait -
edFor /waitedBy, which interlinks two instances of the Event type, allows to express
dependencies among events. If two events are joined through this relationship, the event in
waited-for direction can be interpreted as a trigger, while the event in waited-by direction
is reacting on the trigger event and becomes active whenever a trigger becomes active,
too. This mechanism can be used, e. g., to specify entry points into subprocesses, which
can be invoked or triggered from multiple other events. Other semantic interpretation of
the waitedFor/waitedBy relationship is possible by corresponding code generation
templates.

Resource perspective Resources are modeled by a meta-class named Resource. To
model details on how a resource is accessed, an association class ResourceAccess is
part of the language declaration. It connects the process perspective, the actor perspective,
and the resource perspective in a ternary relationship. Due to its function of joining mul-
tiple perspectives, the meta-class ResourceAccess forms a semantically rich model
concept from which detail information can be derived during the mapping model initial-
ization transformation.

Both classes, their interrelationships, as well as their relationships to model elements of
other perspectives, are assembled in Fig. 20.

Resource ResourceAccess

kind : [INFORMATION, SOFTWARE, PHYSICAL] o usedResource | mode : [CREATE, READ, UPDATE, DELETE]

1.1 0..*| multiple : Boolean
performingActors : Actor

kind : [DEFAULT, MANUAL, SEMIAUTOMATIC, AUTO! « usingProcess

0..*| topLevel : Boolean 1.1

Figure 20: Meta-constructs to model the resource perspective

Attribute Resource. kind (Enumeration) Using the kind attribute, different concep-
tual formings of resources are distinguished. The applicable values are INFORMATION,
SOFTWARE and PHYSICAL.

While the INFORMAT ION kind specifically denotes information objects, and with SOFT—
WARE resources existing or yet-to-be-developed external software components are de-
noted, the category of PHYSICAL resources is kept very general and meant to cover all
remaining resources. This is done according to the consideration that any generic physical
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resource cannot be treated other than being described by a document in the EIS, because
an information system cannot do much more with physical entities. A natural language
description, in turn, is flexible enough to cover all remaining formings of resources for the
purpose of constructing the engineering method. If additional kinds seem appropriate for
specific development projects, they can be added to the EEM meta-model with low effort
by enhancing the list of available kind values in the enumeration.

Attribute ResourceAccess.mode (Enumeration) The mode attribute belonging to
the ResourceAccess type allows to express formal semantics on how a resource ac-
cess is performed. This is done using the four basic “CRUD” function descriptions of
storage access, CREATE, READ, UPDATE and DELETE, which may also be combined, if
senseful (the mode attribute has a 1..n cardinality to possibly set multiple flags in paral-
lel). Making this information available provides valuable conceptual semantics for select-
ing implementation strategies later. It is thus desirable to make this information available
in the conceptual model, and if the original enterprise modeling languages do not pro-
vide identical means of expression, apply some hinting via comment text or tagged values
to include this information on the conceptual level and make it accessible for an adapter
transformation.

Attribute ResourceAccess.multiple (Boolean) It can also be desirable to con-
ceptually express whether a resource access is targeting a single entity of the accessed
resource, or multiple ones. When accessing information resource instances, in some situa-
tions lists of multiple instances are intended to be accessed, instead of single entities, e. g.,
a product catalog consists of a list of product entries, but can conceptually be treated as a
single resource. The multiple flag allows to express this intention.

6.2.2 Mapping model

The core purpose of the mapping model in combination with referenced implementation
strategy patterns is to provide a mechanism for associating conceptual elements of EMs
with implementation-specific details. This way, the mapping model and the implementa-
tion strategy patterns together offer a methodical approach to explicate the design decisions
that go along with the ontological turn of first interpreting conceptual domain models, and
then formulating technical implementation descriptions out of them. To fulfill this pur-
pose, the mapping model language offers specific association classes, which allow for
referencing enterprise model concepts on the one hand, and implementation strategies on
the other hand.

The general pattern of such a mapping association is depicted in Fig. 21.

Implementation strategies may in some cases directly describe individual artifacts which
later make up a deployable system. However, they may also refer to cross-cuttings aspects
of the software system, and be consulted at diverse places in the code generation templates
to query detail information about aspects of the EIS.
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The mapping model thus serves to provide references to all required detail information
about how to generate an EIS. This includes disambiguation and clarification of the enter-
prise model concepts, but also provides details on technical aspects, which are orthogonal
to the domain concepts.

Enterprise Model

Concept Implementation

Mapping Association
Strategy

configuration
details (optional)

Figure 21: Pattern of a single mapping association

A mapping model instance is the container of two basic kinds of objects. At first, ev-
ery mapping model owns a set of implementation strategy models, which are referenced
viathe targetArchitectures relationship and the genericArchitecture con-
tainment relationship. Each implementation strategy model holds a list of implementation
strategy elements that can be chosen as associated implementation strategies for enterprise
model concepts in mapping entries. One special implementation strategy model is always
present in the mapping model, it holds generic implementation strategies which are as-
sumed to be applicable to any target architecture. This generic implementation strategy
model is referenced separately by the genericArchitectureModel containment
reference as a singleton instance of class GenericArchitectureModel. It is not
stored as a separate resource, but is an internal part of the mapping model.

The reference types from the mapping model to the implementation strategy models are
displayed in Fig. 22 as an excerpt of the mapping meta-model. Since there will always be
at least once concrete target architecture to output artifacts for, the targetArchitec-
tures relationship is specified witha 1. . » cardinality, i. e., at least one implementation
strategy model must be referenced from a separate model file.

H MappingModel | AbstractArchitectureModel

©= name : EString targetArchitectures 1..*
o basePackage : EString

= modelURI : EString Z}
[ GenericArchitectureModel

genericArchitecture 1

Figure 22: Excerpt of the mapping meta-model showing the use of implementation strat-
egy models

The second central structure in the mapping model is a list of mapping entries, each one
representing an association between an element in the enterprise model on the one hand,
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and one or more associated implementation strategies from an implementation strategy
model on the other hand. Mapping entries exist for four types of enterprise model ele-
ments, which are ProcessMemberMappings, SequenceMappings, ActorMap—
pings, and ResourceMappings. The meta-classes for building up the mapping struc-
tures for these types of elements are displayed in Fig. 23. The ProcessMapping ele-
ment in the meta-model serves as a container for ProcessMemberMapping and Se—
quenceMapping entries, and does not reference any implementation strategy by itself.

In technical terms, a mapping entry is an association class, instances of which serve as
a link between instances of the associated classes. In this case, the mapping entry as-
sociation classes represent a one-to-many relationship between instances of Process—
Member, Resource, Actor and Sequence on the one side, and instances of concrete
subclasses of AbstractProcessMemberImplementation, AbstractResour—
ceImplementationorAbstractActorImplementation,aswell asimplemen-
tation strategies for sequences, on the other side.

The mapping meta-model contains abstract superclasses which act as placeholders for
concrete implementation strategy types. They are referenced on the right-hand-side of
mapping entries, representing the category of implementation strategies which fits to the
type of the conceptual model element mapped on the left-hand-side.

Choosing an implementation strategy controls how a conceptual element will be techni-
cally realized in a software system. An implementation strategy description, specified by
subclasses of the abstract meta-class Abstract Implementation, can be any kind of
model element structure which can be evaluated to generate code fragments in the code
generation phase. Implementation strategies specify domain concepts of a target system
architecture in the sense of traditional domain-specific modeling (DSM) model concepts.
They control the code generation process, and, if required, can themselves consist of di-
verse sub-elements with an internal structure.

When implementation strategy elements are referenced from a mapping model, they are
first inserted into an implementation strategy model, and then referenced via a right-hand-
side association from one or more mapping model entries. The structure of implementation
strategy model instances is very simple. Implementation strategy model instances merely
serve as lists of indivdual implementation strategy elements. Technically, these models
are required to have a place where to persistently store implementation strategy model
elements. Associating implementation strategy elements from mapping entries, without
inserting them into a model first, would result in orphaned instances which could not be
written to a permanent data storage when saving the models. This is the reason, why
implementation strategy elements at least appear twice in the models, one time as children
element inside an implementation strategy model with which they are persistently stored,
and one or more times as referenced elements in mapping entries.

Most of the mapping entry meta-classes allow to associate multiple implementation strate-
gies to one conceptual element. It is up the the code generation mechanism how to interpret
these cases of multiple implementation strategies associated to one conceptual element.
E. g., the meaning of multiple process-step implementation strategies associated to one
conceptual process element could be understood as a linear sequence of implementation
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strategies, while a multitude of actor implementation strategies associated to one concep-
tual actor could be regarded as a set of alternative implementation options.

Kinds of mapping entries Meta-classes which constitute the set of available mapping
entry types are included in the mapping meta-model as subclasses of the common ab-
stract mapping entry superclass AbstractMapping. There are four different types of
mapping entries, according to the types of conceptual elements in the domain model they
reference for mapping. These four types of mapping entries are

* ProcessMemberMapping, mapping between elements of type ProcessMem—
ber and AbstractProcessMemberImplementation

* SequenceMapping, mapping from one element of type Sequence to
the three implementation strategy types AbstractConditionImplementa—
tion, AbstractControlFlowImplementation and AbstractActor-
ResolverImplementation

* ResourceMapping, associating between Resource elements in the conceptual
models and AbstractResourceImplementation implementation strategies

* and ActorMapping, which maps from Actors to AbstractActorImple—
mentation elements

Process mapping entries An instance of ProcessMapping is created for each busi-
ness process model to be reflected. It contains ProcessMemberMapping entries and
SequenceMapping entries, which bind elements from conceptual business process
models (BPMs) to implementation strategies. While on a conceptual level, business pro-
cess modeling languages (BPMLs) typically distinguish between process-step types and
event types, for the mapping to implementation strategies this distinction can be blurred,
and it can generally be spoken about associating process-members of any kind to process-
member implementation strategies with the ProcessMemberMapping concept.

Sequences are direct connections between two process-members. They represent a pos-
sible single step in passing the control flow from one process-step to another during the
execution of a process instance. To specify detail information about how a sequence is to
be implemented, three orthogonal aspects are to be considered. These are

* the condition, under which the sequence in question is followed. Specifying con-
ditions with sequences makes sense if more than one outgoing sequence from a
process-member exists. In that case multiple outgoing sequences may represent al-
ternative options for the control flow to be followed. If no condition is specified with
a sequence, it is assumed that the sequence is always followed.

* an implementation strategy of how the passing of the control flow is realized. Mul-
tiple alternatives can be consulted depending on the underlying application archi-
tecture, which can be very contingent. Two possible modes of passing the control
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flow are, e. g., a) to internally invoke the next process-member implementation on
the same front-end with the same user as operator, and, b) to notify a central process
control flow manager that the control flow in the current process instance is to be
passed to another front-end.

* an implementation strategy that specifies, which human user will be responsible for
carrying out the next process-member, is the third aspect of passing the control flow,
if human interaction is required at all for the next step. While the business process
models typically name actor roles which are responsible for performing process-
members, these roles need to be resolved at runtime to concrete human users, who
fulfill the modeled actor roles. The according implementation strategy can specify,
how actor roles are resolved to concrete persons.

The three aspects of specifying the implementation of passing the control flow, are for-
mally expressed by three abstract types of implementation strategies, which are speci-
fied in the meta-model in Fig. 23. These types are AbstractConditionImplemen—
tation, AbstractControlFlowImplementation, and AbstractActorRe—
solverImplementation, which are subclassed for concrete applications of the meth-
od by meta-classes that represent concrete implementation options.

A SequenceMapping element refers to instances of these three implementation strate-
gies at the same time, unlike other mapping entries, which associate one type of concep-
tual element to exactly one type of implementation strategy. While the association to a
condition implementations is optional, indicated by the O . . 1-cardinality of the reference
to AbstractConditionImplementation, a concrete control flow implementation
strategy is mandatory, which is specified by the 1-cardinality of the reference to the con-
dition implementation strategy. At least one procedure to resolve actor roles to concrete
users is required to be specified. More than one concrete actor resolving strategy can
also be associated, since the reference to the AbstractConditionImplementa—
tion instances is declared with a 1. . x-cardinality, which allows to chain together a set
of alternative strategies than can subsequently be applied by an application to find suitable
users.

Actor mapping entries Actors occur in conceptual enterprise models in diverse shapes.
E. g., enterprise models may use actors to denote groups of people, a specific position that
is filled by a person, or actors may refer to concrete individual persons who fill a spe-
cific identifiable role in the organization. These diverse meanings attached to the notion
of actors need to be disambiguated for the implementation of a software system. Ab-
stractActorImplementation strategies serve to declare how actor types specified
in conceptual models are represented by the software system.

For the implementation of a software system, typical techniques to implement concrete
notions of actors can, e. g., be derived from the user management technology that is part
of most operating systems. Provided appropriate concrete subclasses of AbstractAc—
torImplementation, a binding from conceptual actors to the operating system con-
cepts of user groups and user accounts can be described and be prepared for generative
implementation.
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There is a difference between the concepts of an AbstractActorImplementation
strategy declared here, and an AbstractActorResolverImplementation strat-
egy, which is part of the implementation specification for process sequences. Abstrac—
tActorImplementation strategies statically describe how actor concepts of the en-
terprise models are technically understood, and how they can be stored and managed as ob-
jects of the software system. AbstractActorResolverImplementation strate-
gies, in contrast, describe how concrete persons are chosen, who conform to a given actor
implementation. E. g., an actor resolver implementation will select a matching single user
account that is member of a specific user group, if the actor to be resolved is specified by
an AbstractActorImplementation to be a collective actor that is implemented by
that user group.

Resource mapping entries The structure of resource mapping entries is again simple.
An instance of ResourceMapping refers to a conceptually modeled resource on the one
side, and a corresponding instance of an implementation strategy description on the other
side. Resource implementation strategies are described by meta-classes, which inherit
from the abstract superclass AbstractResourceImplementation.

Options for specifying concrete subclasses of AbstractResourceImplementa—
tion are discussed in Sect. 6.2.2.

Kinds of implementation strategies Implementation strategies, as they are referenced
by mapping model entries, are subdivided into several kinds, depending on what type of
conceptual element they are intended to be related to. Classifying the available imple-
mentation strategies is done by abstract superclasses, which group the implementation
strategies according to their intended use.

The top abstract superclasses for implementation strategies of specific kinds, declared as
sublcasses of the most general AbstractImplementation class, are

* AbstractProcessMemberImplementation
* AbstractConditionImplementation

* AbstractControlFlowImplementation

* AbstractActorResolverImplementation
* AbstractResourceImplementation

* AbstractResourceAccessImplementation

* AbstractActorImplementation

The root superclass of all implementation strategy types is AbstractImplementa-—
tion. This concept is, however, too generic to specify any useful semantics, it only serves
to group the inheriting implementation strategy types on the upper most level. Concrete
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semantics is carried by subclasses of AbstractImplementation, which categorize
implementation strategies as intended for being associated with specific types in the do-
main model.

Throughout the meta-model, some abstract meta-classes exist as leaves of the inheritance
hierarchy tree below Abstract Implementation. They are consistently named using
the prefix ArchitectureSpecific. . ., and locate extension points in the model un-
der which architecture-specific subclasses may be defined by separate meta-models. With
the provided tooling support of the ECORE diagram editors, this is done by importing
the extension point meta-class, or any other abstract meta-class in the inheritance hierar-
chy of implementation strategies, as shortcut elements into a new implementation strategy
language. Once the meta-class has been imported to the new implementation strategy
meta-model, implementation strategy language constructs can inherit from the imported
concept, and become compatible to be used in combination with the mapping model lan-
guage. The inheritance mechanism serves here to extend the mapping model language, and
provides an interface for newly created language elements to the mapping model concepts.

Process member implementation strategies Implementation strategy types for
process-steps are subclasses of AbstractProcessMemberImplementation,
which makes them able to take part as associated implementation strategies in a Pro—
cessMemberMapping. These strategies implement conceptual elements described in
BPMs. They may represent implementations of fully automatic process-steps, semi-
automatic steps which perform interaction with a human user, or support to guide entirely
manual working steps. According to the variety of different process-step implementations,
the AbstractProcessMemberImplementation concept is further structured by
abstract subclasses which categorize the different kinds of process-member implementa-
tions. In the first place, there is a distinction between AbstractProcessStepIm—
plementation and AbstractEventImplementation.

Although the model distinguishes between the meta-classes AbstractPro-
cessStepImplementation and AbstractEventImplementation, the
difference between the implementation of a process-step and the implementation of
an event is not as relevant as the distinction between process-steps and events on the
conceptual level. To generate deployable artifacts, both process-member types can
have impact on code for workflow execution. All specialties of distinguishing between
process-steps and events in the generated artifacts should thus be handled by the code
generation templates, to remain fully flexible in realizing any possible implementation. As
a consequence, on the level of the mapping model, the distinction between process-steps
and events is rather blurred than further refined. Both concepts can equally be treated as
process-members, and implementation strategies can be assigned interchangeably to both
of the conceptual types.

The notion of an AbstractProcessMemberImplementation is further re-
fined to reflect different fundamental kinds of process-steps. The additionally pro-
vided abstractions, which categorize process-step implementation strategy types into
those which interact with human users, and those which perform automatic pro-
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cessing, are AbstractInteractiveProcessStepImplementation and Ab-
stractAutomaticProcessStepImplementation.

Examples for concrete process-member implementation strategies are discussed in
Sect. 9.1 and summarized in Fig. 42.

Manual process-steps implementation strategies Describing manual process-steps in
conceptual business process models does not mean that there is no software representation
on the EIS side for these steps. In fact, an EIS can support the execution of manual tasks
in a comparable way as it supports semi-automatic tasks, by providing means to admin-
istrate which manual tasks are currently to be done, and in which process contexts they
appear. There must also be an interactive component for a user to indicate when a manual
task has been completed, and, optionally, with what result it was completed. All admin-
istrative task handling, and interactive communication with the user, is thus present in the
same way as implementation strategies for semi-automatic tasks rely on them. From an
implementation perspective, the Manual implementation strategy is thus treated identical
as other interactive implementation strategies, by generating corresponding artifacts that
provide the described user interaction component on a target architecture.

The resulting generated software component that implements a Manual implementation
strategy may realize its own handling of manual tasks as part of an overall front-end API
application that consists of generated source code. In an alternative architectural setting,
the design decision may be taken to generate workflow descriptions as executable artifacts,
which are to be executed by a workflow execution engine (workflow management system
(WEMY)). In this case, existing specifications and implementing technologies exist, which
can be made use of by the generated artifacts. For workflow engines, extensions exist
which enhance the original set of Business Process Execution Language (BPEL) tasks
by a standardized collection of workflow tasks that reflect manual tasks. This extended
set of BPEL functionality is called BPEL4PEOPLE [OrglOb]. Together with the WS-
HUMANTASK specification proposed in parallel, it conceptually introduces a People—
Activity task, and a set of concrete operations that implement manual working steps as
web-services [RvdAQ7]. WEMS, which claim to conform to the BPEL4PEOPLE and WS-
HUMANTASK standards, provide standard implementations of theses tasks, which can be
referenced when specifying or generating workflow specifications.

If the mechanism for handling manual process-steps is to be implemented as internal func-
tionality of an EIS front-end, its graphical user interface (GUI) representation can be real-
ized, e. g., by a to-do list, which informs the user about what tasks are currently requested
to be carried out manually [RDBT08]. The to-do list should offer interaction functional-
ity that lets a user mark a completed human task step as finished after the step has been
performed, to inform the EIS that this workflow step has been completed. Additionally,
the to-do list can offer links to access documentation material that instructs the user in
carrying out the task.

The concept of a to-do list can also be generalized to provide an entry point for the user to
execute other semi-manual tasks which require user interaction. See Sect. 8.2.
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Alternative options besides implementing the entire functionality as part of an EIS front-
end GUI, or leaving the implementation to a WEMS, are possible. For example, if human
tasks are relatively rare, and requests to perform them do not require immediate response,
manual tasks management could be realized via an automatic e-mail notification system,
which sends out requests for manual tasks to perform to a user, and gets notified about task
completion by e-mail responses of the user.

Information access implementation strategies To access information is fundamental
in organizational environments, and, as a consequence, a task to be thoroughly supported
by an EIS (see Req. 6: Enable information awareness).

Accessing information is typically expressed in conceptual enterprise models by specify-
ing a relationship between a process-step and an information resource. On the conceptual
level, such a compact way of expressing that information access takes place provides the
desired degree of granularity and detail information.

For implementing a software component that provides information access to the user via a
GUI, the semantics of what it means to access information needs to be refined. To access
information can more precisely mean

* to edit one specific existing information object
* to edit multiple existing, possibly interrelated, information objects

* to pick information objects from a (possibly filtered or derived) list of information
objects and optionally edit them

* to create a new information object of a specific document-type

* or, to create many information objects of a specific document-type

In addition, for every information object edited, the process of editing can either be re-
garded as a transient process that is only partially carried out and later to be continued, or
as a final step of editing which completes an information object and makes it valid. A third
mode of operation is editing information objects that are finalized after the editing process
is finished, which means that the information object will not be available to further editing
afterwards, only for viewing or reading its contents.

Given this complex set of variations, to formalize a complete notion of information access,
additional parameters need to be specified in addition to conceptual relationships between
information access process-steps and associated information resources. It needs to be
specified

» which types of information objects are to be accessed
* which existing information object instances are to be accessed

 which existing information object instances are to be modified
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* whether zero, one or more new object of these types are to be created during this
editing process-step

* whether the user can pick one or more existing instances of these types to edit, and,
if so, which filter should be applied to the list of existing instances of the types

* how a user interface looks like which presents the selected information objects in a
useful combination

Since many of the specific semantics of information objects and their handling in a process
context can generically be described and thus prepared for further implementation, the
abstract superclass AbstractInformationObjectAccessImplementation is
part of the mapping meta-model. It can be refined by concrete implementation strategies
to denote which kind of information object is addressed on a concrete target architecture
platform. Examples of such implementation strageties are displayed in Fig. 57.

Runtime parameters via named slots Accessing input and output resources is an im-
plicit feature of a process-member implementation strategy. For software-implemented
process-members, this means an implementation can expect some input information ob-
jects to be accessible from the current process runtime instance, and it can deliver zero
or more output information objects as the result of its processing. The way how these
input and output resources are accessed is modeled via the references resourceAc—
cessSources and resourceAccessTargets, which both reference to instances
of concrete subclasses of AbstractResourceAccessImplementation, whichin
case of accessing information objects can be further refined to AbstractInforma-—
tionObjectAccessImplementation.

It is also desirable to access information object content at model design time to dynam-
ically specify values of implementation strategy attributes. To do so, a mechanism can
be provided which allows to access named slots as variables in mapping model parame-
ters at model design time, and fill in the associated values at runtime. This is achieved
by the convention of enclosing information object slot names in “#”. Any fragment of
an implementation strategy parameter value that appears inside # characters is intended
to be interpreted at runtime as the name of an information object slot, the content of
which is used to substitute the #-enclosed part with the actual slot content, using a string
representation of the contained information object. E. g., to dynamically set the ad—
dress attribute of the WriteEMail implementation strategy with a value derived from
the slot customerEmail, the WriteEMail’s instance attribute address is set to
the value #customerEmail#. References to runtime values may also be combined
with constant value content, and there may be multiple references per attribute, as, e. g., a
value of Please remember #eventName# on #eventDate# forthe subject
attribute. Fig. 24 shows an example of how runtime parameters are specified in a mapping
model.

If required by a concrete engineering project, the mechanism which dereferences the val-
ues enclosed in # signs may be more complex than solely referencing named slots as
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string values. References may also consist of query language expressions, e. g., XPATH
expressions, which retrieve values from structured XML data.

6.2.3 Implementation strategy models and corresponding modeling languages

More specific implementation strategies, which are not generically provided by the
platform-independent implementation strategy elements of the mapping model language,
require to be expressed in their own modeling language. Models in these languages serve
as means for formally capturing design decisions a software architect makes when decid-
ing how to implement a concept of an enterprise model for a concrete target architecture.
Languages of this kind are called implementation strategy languages in the method, they
get specified by implementation strategy meta-models.

An implementation strategy meta-model captures relevant technology related knowledge
about the target platform for which software is to be developed. Implementation strategy
meta-models are domain-specific models. The domain in question is the technical system,
for which software is to be developed. The domain covered by implementation strategy
meta-models is thus the technical domain of the target architecture, not the conceptual
domain covered by enterprise models. For each target architecture platform the created
software is intended to run on, e. g., web-application servers, mobile devices, or local
desktop systems, an individual implementation strategy modeling language is required
to be specified by an implementation strategy meta-model, which describes the technical
features available on these platforms, including all parameters that are required to control
an automated code generation process to generate executable artifacts.

Since the elements in an implementation strategy meta-model are subclasses of abstract su-
perclasses specified in the mapping-model, elements from implementation strategy model
instances are compatible with the mapping model structure. By providing inheritable ab-
stract super-concepts, the mapping models becomes extensible by new implementation
strategy languages which provide concrete types as subclasses of the abstract concepts.

There are two ways to provide concrete subclasses for these abstract superclasses. One
option is to specify an implementation strategy modeling language, which contains lan-
guage elements that directly inherit from the top-most abstract superclasses. These are,
€. 8., AbstractProcessStepImplementation, AbstractResourceImple-
mentation, or AbstractActorImplementation. Another option is to subclass
concepts from meta-model classes which are explicitly marked for being extension-points
for implementation strategy meta-models. These are the abstract classes

* ArchitectureSpecificProcessStepImplementation

* ArchitectureSpecificAutomaticProcessStepImplementation
* ArchitectureSpecificEventImplementation

* ArchitectureSpecificInformationStorage

* ArchitectureSpecificInformationObjectAccess
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* ArchitectureSpecificSoftwareResource

* ArchitectureSpecificInformationType

* ArchitectureSpecificConditionImplementation

* ArchitectureSpecificControlFlowImplementation

* ArchitectureSpecificActorResolverImplementation
* ArchitectureSpecificActorImplementation

* ArchitectureSpecificResourceAccess

* ArchitectureSpecificSoftwareResourceAccess

e ArchitectureSpecificMenultem

* ArchitectureSpecificAnswerOption

* ArchitectureSpecificUserInteraction

These classes are marked in the diagram of the mapping meta-model as extension points,
to indicate the concepts for which the mapping model is prepared to be extended by ad-
ditional languages. Since most of these classes are directly inheriting from their top-most
abstract superclasses, without adding their own attribute or method declarations, techni-
cally it does not make any difference whether classes in implementation strategy meta-
models inherit from the extension point classes, or directly from the top-most abstract
superclasses. However, using the extension point classes makes the purpose of extending
the predefined set of generic implementation strategy types clearer.

6.3 Model transformations

During the application of the method, three model transformations are applied which se-
quentially support software architects and developers in performing an enterprise model-
driven software engineering (EMDSE) process. The first one is an adapter transformation
(introduced in Sect. 6.3.1), which serves to translate an external enterprise model artifact
into an enterprise modeling language internally used for further processing.

The central transformation of the method is the mapping model initialization (described
in Sect. 6.3.2), which creates a mapping model that associates concepts of the enterprise
models with details about implementation strategies for creating software. The mapping
model is automatically initialized with reasonable default values, to keep the amount of
necessary manual editing activities for software architects and developers as low as possi-
ble.

A third transformation finally converts the technical descriptions given by modeled im-
plementation strategies into executable software (see Sect. 6.3.3). One way to do this is
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to use code generation templates for outputting compilable and executable source code,
alternative approaches are interpretation mechanisms, which apply execution semantics to
models at runtime.

6.3.1 Adapter transformation for enterprise models

The first applied transformation serves to convert enterprise models, which are edited with
an external model editor, to an internal representation. It serves as an adapter transfor-
mation for plugging-in different external enterprise modeling languages and editing tools,
and make them identically usable in the subsequent steps of the method. This allows for
reusing existing model transformations and validity checking rules where possible. The
internal language to reflect enterprise models is called extracted enterprise model (EEM),
which contains a set of basic enterprise modeling concepts in one compact modeling lan-
guage. They reflect basic enterprise modeling concepts needed for further applying the
software engineering method. The adapter transformation extracts the modeled semantics
of these basic enterprise modeling concepts from the original enterprise models, and hori-
zontally translates them into the EEM representation. The transformation outputs an EEM
model file, and runs automatically without interaction.

The model which is generated as output of the adapter transformation is not intended to
be edited in the course of the method. Any changes to the enterprise models are applied
to the original models, and subsequently the adapter transformation is run to update the
internal EEM representation. An immediate execution of the adapter transformation after
changes are made to the enterprise models, while at the same time manual modifications
of the internal representation are prevented, ensures that the internal representation and the
original enterprise models are always in sync.

In simple cases, the internal representation and the external enterprise modeling language
use semantically equal concepts. Transforming these concepts resembles a copying of
the element’s name and basic attributes to an identical modeling element in the output
model. Besides this simple case, the adapter transformation has to cope with two kinds
of mismatches: at first, there may be cases in which the internal representation demands a
finer grained degree of semantics than provided by the original modeling language. One
potentially place for this is the mode attribute attached to resource access relationships,
which may hold the values CREATE, READ, UPDATE or DELETE. If an external enterprise
modeling language does not provide means to specify these modes of access as additional
semantics to resource accesses, the external enterprise model may be attached with com-
ment notes or any other means of freely attached string values, which are then evaluated by
the adapter transformation as informal hints to determine the formal EEM model content.
When the adapter transformation is created, the use of informal information encoding via
string values should carefully be documented in an end-user documentation, which de-
scribes the informal extensions to the enterprise modeling language required to make full
use of the engineering method. An example of such a natural language description docu-
ment is given in Appendix A.3.5.

The second kind of mismatch relates to the opposite case, when specific information from
the external enterprise models is to be kept accessible in the internal representation, to
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later evaluate it in the mapping model or code generation transformations, but there are no
corresponding modeling language constructs in the internal representation language. For
these cases, the internal representation language allows to attach arbitrary key-value-pairs
as tagged values to any model element in the internal EEM representation. Via storing
of structured information in formatted strings, and later parsing these for evaluation in the
mapping model initialization and code generation transformations, any kind of information
can be encoded and passed on in the course of the method. In a very elaborate case,
the format of a comment string with additional semantics may be specified via a formal
language grammar, such as Enhanced Backus-Naur Form (EBNF) [MVM10].

An example model-to-model transformation that serves this purpose is listed in Appendix
A3l

6.3.2 Mapping model initialization transformation

The central model used in the proposed software engineering method is the mapping
model. It explicates relationships between conceptual elements of the enterprise models
on the conceptual side, and implementation strategies, which describe how to implement
the corresponding concepts in a software system.

To create a mapping model, a list of mapping entries is initialized, each one referring to
an enterprise model element with its “left-hand-side” mapping relationship. Subsequently,
software architects and developers can decide which implementation strategies are suitable
to reflect this conceptual element in a software system, and set the “right-hand-side” refer-
ence of the mapping entry accordingly. Deciding which implementation strategy to choose
sometimes requires specific competencies and can only be performed by highly skilled
software architects and developers. Other mapping operations, however, may simply need
to repeatedly pick associated implementation strategies for specific kinds of conceptual el-
ements. E. g., conceptual elements describing actors and actor groups can be expected to
be repeatedly mapped to implementation strategies that realize the notion of an actor with
the implementation concept of a user account or a user group of the underlying operating
system. To create these mappings manually would impose a high workload on developers,
with time-consuming repetitive tasks that unnecessarily bind experts’ capacities.

To apply professional resources most efficiently, the proposed method accounts for an au-
tomatic initialization of the mapping model, with algorithmical steps that do not require
human skills. These algorithmic steps are defined by the mapping model initialization trans-
formation. Depending on the degree of automation strived for in a development project,
initialization transformations can be created, which reach up to initializing the entire map-
ping model automatically. This degree is desired in cases when the method is configured
to provide a 100% code generation automatic transformation procedure from enterprise
models to executable artifacts.

The mapping model initialization transformation consists of two passes. First, it iterates
over all elements in the enterprise models that are to be associated with implementation
strategies, and creates a mapping model entry with a corresponding “left-hand-side” con-
ceptual element reference for each of these elements. This automatic initialization creates
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a skeleton mapping model without references to implementation strategies yet. The basic
structure of the mapping model now exists, and software architects and developers can
optionally edit the model by manually picking suitable implementation strategies for each
mapping entry.

As a second pass, the mapping model initialization transformation additionally guesses
default implementation strategies depending on the enterprise model elements it meets
during the initialization. This way, re-occurring design decisions can be automatized as
part of the model transformation, and do not need to be performed manually multiple
times. Since the mapping model is intended to be manually reviewed after the automatic
initialization, the proposed defaults are not required to be perfectly precise. The algorithms
that pick the defaults thus also are not required to be too complex, they may operate on
simple hints and assume later human reviewing and correction, where required.

The two passes of the mapping model initialization transformation get implemented by
two distinct model transformation descriptions. The first phase, which consists of creating
a mapping entry for each conceptual element and setting the “left-hand-side” reference,
can be performed independently from any aspired target architecture. The corresponding
model transformation definition can thus generically be reused in any development project.
The second transformation, however, needs knowledge about the target architecture for
which default implementation strategies are to be guessed. It is thus developed separately,
one transformation for each target architecture, and possibly specific to each development
project.

Since in the second phase implementation strategy instances are generated, the model el-
ements which represent these implementation strategies also need to be stored as part of
a model instance. Therefore, the mapping model initialization transformation also cre-
ates one or more implementation strategy models, as instances of implementation strategy
meta-models. As the result of the mapping model initialization transformation, there are
thus at least two new files created, which are the mapping model instance itself, and one
or more implementation strategy model instances holding those implementation strategy
model elements which are referenced from the “right-hand-side” of the mapping model.

Selecting default implementation strategies is iteratively performed for each target archi-
tecture. The order in which the target architecture types are processed determines, which
default selection will have priority. Each set of default guessing algorithms is implemented
as separate model transformations, which can be executed in configurable sequence by the
supporting tooling components (see Sect. 12.3).

In some cases, it will not be possible to determine reasonable defaults for an implemen-
tation strategy. No element will then be added to the mapping model entry, however, the
mapping entry will remain part of the mapping model with an empty reference to an im-
plementation strategy. When automatically checking the mapping model for completeness
using validity constraints (see Sect. 6.4), locations in the model with missing references
can automatically be detected, and developers can automatically be led through the re-
maining editing process of the mapping model.

When the second pass of the initialization transformation is run, it operates only on those
mapping model entries that do not reference any implementation strategy yet. The trans-
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formation thus behaves idempotent when run multiple times, and does not modify any
previously set entry. This allows to first edit entries manually, and preserve the chosen im-
plementation strategies when the transformation is run. The initialization transformation
can also be used for updating previously existing mapping models. In case of the update
operation mode, the first steps of creating an empty mapping model and skeleton mapping
entries will only be performed for enterprise model elements which are not mapped yet.
Then, guessing default implementation strategies is performed for all mapping entries as
described above, influencing only those mapping entries which have no implementation
strategy set yet. The mapping model initialization transformation thus can be invoked in
two modes of operation, which are

* the creation of a new mapping model with accompanied implementation strategy
model instances

* or, the update of existing mapping models previously created, to incorporate yet
unmapped new elements from enterprise models.

A prototypical mapping model initialization written in the XTEND language is listed in
Appendix A.3.2. This transformation is accountable for creating the basic mapping model
structure with a mapping entry for each referenced conceptual model element, and for se-
lecting default implementation strategies. Appendices A.3.2 and A.4.2 contain listings of
example model transformations, which select architecture-specific default implementation
strategies for specific implementation targets. Example modeling workflow scripts for in-
voking the model transformations either in initialization mode, or in update mode, are also
included in these Appendices.

6.3.3 Artifact generation and alternative approaches

Once all models created throughout the method are available and properly validated, a
collection of formalized knowledge is available which contains all information required to
derive a running software system from it. However, this knowledge is presented in a shape
which is not executable by computers yet. Knowledge in the models first has to be mapped
to a machine interpretable form.

One way to perform this mapping is to generate source code that realizes the modeled
implementation strategies. To do so, a mechanism has to be specified which outputs source
code that reflects the information in the models, e. g., by conditionally including fragments
of source code depending on model content, or by reacting on model element attribute
values and filling in variable parts of the source code with values derived from them.

The description of such a code generation procedure serves as an interface between non-
executable model semantics, and technical execution semantics for a computer system. It
offers a defined procedure, which deterministically maps model content to source code.
The description of such a transformation procedure is provided by a set of code genera-
tion templates, or, more general artifact generation templates, because most languages for
creating such generation procedures work with a template-based approach. In Appendices
A.3.3 and A.4.3, examples of code generation templates are shown.
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An alternative to performing an explicit artifact generation step is to interpret the mod-
els at runtime, using a mechanism that provides the implementations of model-described
concepts through an interpreter program. Reading in the models, and acting according
to their contents, is thus another way of defining technical execution semantics formally.
This option to interpret models for execution, however, will not be examined in further de-
tail. The method proposed here suggests to apply artifact generation techniques, because
generation procedures at development time more cleanly separate between the language
for describing the generation template, and the language in which the resulting software
system will be created. This makes the development of code generation templates eas-
ier compared to writing a model interpreter. Other fundamental differences between code
generation and interpretation, e. g., the ability to modify results of the transformation by
editing the generated source code, will also not be discussed here, because making man-
ual changes to generated source code artifacts is not considered a methodical step in the
method elaborated here. There are approaches dealing with this question, which could be
applied orthogonally [Gul09].

The approaches of generating artifacts at development time, and performing an interpre-
tation at run time, can also be mixed. In this case, an interpretable model format is first
generated from the models created throughout the methodical procedure, which is then
suitable for run time interpretation by an interpreter engine.

Besides generating computer executable artifacts, code generation procedures can also be
utilized to generate any other kind of artifact, computer or human readable. Among these
are configuration files, which can be created depending on information given in the models,
and also human-readable documentation, provided the model contents are enriched with
documentation fragments. The variety of possible artifacts to generate, suggests to rather
operate with the term “artifact generation” rather than “code generation”, which both are
applied synonymously throughout this work.

6.4 Validity checks

The proposed method guides software architects and developers through a sequence of
model creation steps and model editing activities. While manual creation and editing
of models is a creative and highly knowledge-dependent activity, automatic support for
manual editing activities can be provided to some extent. At least, it can automatically be
determined if a model needs further basic modeling activities, and, even more supportive
for a developer, where in the model editing activities still are required. This allows for
providing automatic wizards that lead developers through the sequence of editing affected
locations in the models, until all formally determinable lacks are resolved.

To consider a model as “valid” means to consider all of its elements being complete and
consistent. If all individual parts of the model recursively are considered valid, the model
is considered valid in total. This assumes a notion of a model being a set of model elements
which recursively are composed of elements again, which can safely be assumed, since the
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underlying architectural concepts which express models on the meta-meta level are built
following this assumption.

For a single model element to be valid means that all of its attribute values and relationships
carry reasonable values to allow the method to further continue without errors. Especially,
an automatic check for validity in this sense should make sure that subsequent model
transformations and code generation transformations can operate on the model without
erTors.

An automatic check for validity can be implemented by summing up the required con-
ditions, under which each model element is considered complete and consistent. There
are two options for formally specifying these conditions. The first option is to attach
meta-information to attributes and relationships in the modeling language, which state
whether values are required or optional, or to specify numerical cardinalities about the
minimum and maximum number of elements referenced by a relationship instance. Most
meta-modeling languages contain such features. Since most notions of validity are simply
related to the question whether a value is available or not, the required meta-attribute, or a
non-zero minimum cardinality, respectively, are simple but powerful techniques to specify
the notion of validity of model elements.

The second option for specifying model validity is performed via traditional model-
checking using explicitly formulated constraints written in a constraint language. Using
checks for required attributes and non-zero cardinalities on relationships on the one hand,
and explicit constraint-checking on the other hand, the models involved can to a useful
extent be automatically checked for validity. Tooling support for the method provides au-
tomatic wizards, which indicate yet incomplete model elements and guide developers to
the corresponding model-locations. The locations where to edit the model and fix a failed
check can easily be determined due to the local character of the condition statements typi-
cally used in model checking languages.

The proposed method uses validity checks at two points in the methodical procedure. Va-
lidity checks are applied to the enterprise model representation in EEM format, and to
the mapping model and its accompanied implementation strategy models. Both kinds of
validity checks are discussed in the following subsections.

6.4.1 Validity check for enterprise models

After input enterprise models have been transformed to an EEM representation (see
Sect. 6.3.1), a validity check is applied to the EEM model to make sure it can be pro-
cessed by the subsequent operations of the method. Doing such a check at an early stage
of the method increases the efficiency of applying the method, because it can avoid typ-
ical sources of errors in later stages of the method beforehand. E. g., the validity check
can make sure that every conceptually modeled process-step is referencing at least one
performing actor. Demanding this constellation from the conceptual models, allows for
an unambiguous resolving of actor implementation strategies which describe the technical
details about actor authentication and authorization.
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In cases when incompleteness or ambiguities are detected, a list of problems is generated
by the validity checking step, which gives a description on each detected problem in the
enterprise model. The output of the validity check mechanism can be presented to mod-
elers in terms of a to-do list which describes points of remaining work in the enterprise
models. In a further elaboration of the method, it could also be the basis for a development
supporting wizard, which guides software architects and developers step by step through
yet unresolved issues about the enterprise model.

When issues are detected, modifications to resolve them are carried out on the original
enterprise models. Afterwards, the adapter transformation is run again, and the enterprise
model validity check is carried out on the internal representation of the enterprise models
another time. This cycle is repeated until no more issues are detected by the enterprise
model validity check. Unlike in typical cases with validity checks, not the checked model
needs to be manually revisited in case the checking failed, but the original enterprise model
is edited.

The internal enterprise model representation is not intended to be edited at all, it is re-
generated after every version change of the enterprise models. Depending on the underly-
ing tooling support, this conversion may happen transparently in the background whenever
changes to the original enterprise models have been made. To locate the source elements
of the detected issues, the proposed procedure could be enhanced by a tracing mechanism
that is added to the adapter transformation. Such a tracing would keep a list of mappings
from the original enterprise model elements to model elements in the internal represen-
tation, and would allow for implementing tooling support which automatically displays
locations of detected validity issues in the original enterprise models.

Appendix A.3.1 shows a prototypical implementation of validity checks for EEM in-
stances.

6.4.2 Validity check for the mapping model

The notion of validity of a mapping model is defined with regard to the operative semantics
of a later code generation process or interpretation during runtime. A mapping model is
considered “valid” in the sense of the method, if it contains enough and unambiguous in-
formation to perform code generation or interpretation. For the mapping model, this notion
of validity is composed of two aspects. At first, a mapping model must contain mapping
entries for all enterprise model elements that need to be associated to architecture-specific
concepts. For example, every actor concept in the enterprise model must be associated to a
corresponding actor implementation strategy, because otherwise all process-steps in which
the actor is referenced remain underspecified for the implementation. The left-hand-side
of the mapping will in most cases be set during the initialization transformation, except for
optional mapping entries that are added manually. The right-hand-side of the mapping, i.
e., the reference to an implementatiosn strategy, may, however, be left blank by the initial-
ization transformation in cases when no reasonable default implementation strategy can
be determined. It will thus regularly happen that a mapping model is not complete after
initialization. Software architects and developers will revisit the default values chosen and
will fill in the missing architectural concepts.
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As a second aspect, each of the referenced implementation strategy descriptions from the
referenced implementation strategy models has its own validity constraints, which specif-
ically determine if code generation or interpretation of the described strategy can success-
fully be performed. During the check of the mapping model, these conditions are also
validated, to form the second set of conditions which must hold true to be able to speak of
a valid mapping model.

The implementation strategy model’s attributes and child elements are intended to cover
the semantic delta between what can automatically be derived from the conceptual enter-
prise models, and what is required to generate fully running software components. The
attributes and child elements of implementation strategy descriptions can thus be expected
to go into fine-grained detail. A high degree of interdependencies among detailed code
generation configuration can be expected at this low abstraction level of concrete technol-
ogy.

After the initialization transformation has been run, an implementation strategy model
is usually still incomplete, unless the method has been configured to perform a 100%
code generation transformation. The initialization transformation may create appropriate
implementation strategy elements, but in some cases it may not be possible to initialize
all attributes and further detail configuration with automatically derived values. For this
reason, it is normal to assume that the mapping model validity check will initially fail
when applied to a freshly initialized mapping model and its corresponding implementation
strategy models.

In the course of the method, validity checks of the mapping model are applied to guide
software architects to those model elements which need further specification and manual
refinement. E. g., mapping entries <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>