
λογος
Logos Verlag Berlin ISBN 978-3-8325-3536-0

This book elaborates a software development method for creating
information systems from enterprise models, to achieve a close
alignment between business processes, the structures of organizations,
and the functionality offered by information systems supporting the
organizations’ work. The method is designed as a generic framework to
work with any enterprise modeling language, and to generate software
for any target system platforms. Fundamental methodical challenges
in transforming conceptual models to implementation artifacts are
faced by involving auxiliary models into the software creation process,
and splitting up the transformation procedure into multiple dedicated
phases.

Using this approach, the abstraction gap between conceptual enterpri-
se models and technical implementation artifacts gets systematically
bridged by methodical concepts, in order to perform an ontological turn
from the bird’s-eye-view description perspective of enterprise models,
to an internal perspective describing technical details of a software
system.

Prototypical implementation examples for illustrating the introduced
concepts are included in the book and are available for download.
They demonstrate how to use the method with model-transformations,
validity checks, and domain-specific modeling languages inside an
Eclipse development environment.

Je
ns

G
ul

de
n

M
et

h
o

d
ic

al
S

u
p

p
o

rt
fo

r
M

o
d

el
-D

ri
ve

n
S

o
ft

w
ar

e
E

n
g

in
ee

ri
n

g
w

it
h

E
n

te
rp

ri
se

M
o

d
el

s Jens Gulden

Methodical Support
for Model-Driven
Software Engineering
with Enterprise Models



Methodical Support
for Model-Driven Software Engineering

with Enterprise Models

Dissertation zur Erlangung des akademischen Grads eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

an der Fakultät für Wirtschaftswissenschaften
der Universität Duisburg-Essen, Campus Essen

Vorgelegt von

Diplom-Wirtschaftsinformatiker JENS GULDEN, M. A.
geboren in Unna

Essen 2013



Gutachter:
Prof. Dr. ULRICH FRANK

Zweitgutachter:
Prof. Dr. STEFAN EICKER

Mündliche Prüfung am 29. Juli 2013



Abstract

A central research goal in information systems science is to achieve a close alignment
between business processes, structures of organizations, and the functionality offered by
enterprise information systems (EISs), which are used to support the work of organiza-
tions. Traditionally, there is a methodical gap between describing organizational incidents
and software functionality, because organizations and software systems are understood
and constructed with different terminology and on different levels of abstractions, typi-
cally also by differently educated groups of people.

In enterprise models (EMs), dedicated modeling language elements are used to express
knowledge about processes in organizations, e. g., about who is responsible for performing
actions, what resources are involved, and what strategic goals are intended to be realized
by organizational means. The work at hand shows, how EISs can be created based on this
knowledge, which serve as supporting software for performing these tasks.

Software development traditionally has to face a distinction between people who work
with software, and people who create software. With the use of EMs, a chance opens up
to closer involve the users of software systems into the process of developing and config-
uring the software. Building software from enterprise models is desirable, because once
a dedicated relationship between enterprise models and software functionality has been
established by a development method, involved users and responsible stakeholders can
adapt the software according to their business needs, without having to deal with program-
ming or technical details. This increases efficiency both in developing and operating the
software, because software functionality is derived from requirements implicitly stated in
EMs. Such a development procedure also promises to more efficiently adapt EIS to dy-
namic changes in organizations and their environment. Trust in the developed software
system is also increased by involving users and responsible stakeholders into specifying
the resulting software functionality.

The following research work elaborates a software development method to create EISs
from EMs. The method is designed as a generic framework to work with any enterprise
modeling language, and to generate software for any target system platforms, after ap-
propriate configuration. Fundamental challenges in methodically transforming conceptual
models to implementation artifacts, are faced by involving auxiliary models into the soft-
ware creation process, and splitting up the transformation procedure into multiple ded-
icated phases. Using this approach, the abstraction gap between conceptual enterprise
models and technical implementation artifacts gets systematically bridged by introduced
methodical concepts, in order to perform an ontological turn from the bird’s-eye-view de-
scription perspective of enterprise models, to an internal system perspective describing
technical details of a software system.

The elaborated method provides means for efficiently guiding modelers and software de-
velopers through the software engineering process. It can be configured at multiple points,
to choose the degree of automation on a continuum between a manually supervised de-
velopment process with methodically scheduled manual development steps, and a zero-
coding 100% code generation approach.

1



To clarify the theoretically introduced concepts, prototypical implementation examples are
included in the present work. They demonstrate how to configure the method with model-
transformations, validity checks, and domain-specific modeling languages, and serve as
initial example cases for enterprise model driven software development using the Software
Engineering with Enterprise Models (SEEM) method.

2



Zusammenfassung auf Deutsch

Ein zentrales Forschungsziel der Wirtschaftsinformatik ist es, einen Abgleich zwischen
den Geschäftsprozessen und Strukturen von Organisationen, und der Funktionalität von
Unternehmensinformationssystemen (Enterprise Information Systems, EIS), zu erreichen,
mit denen die Arbeit von Organisationen unterstützt wird. Traditionell besteht eine metho-
dische Kluft zwischen der Beschreibung organisationaler Gegebenheiten und der Funktio-
nalität von Software, denn Organisationen und Softwaresysteme werden mit verschiedener
Terminologie und auf verschiedenen Abstraktionsebenen beschrieben und konstruiert, und
dies typischerweise von verschieden ausgebildeten Personengruppen.

In Unternehmensmodellen werden dedizierte Sprachmittel genutzt, um Wissen über Pro-
zesse in Organisationen zu modellieren, zum Beispiel über handelnde und verantwortliche
Akteure, eingesetzte Ressourcen, oder strategische Ziele, die durch organisatorische Mit-
tel erreicht werden sollen. Die vorliegende Arbeit zeigt, wie basierend auf diesem Wissen
EIS entwickelt werden können, die als unterstützende Software zur Ausführung dieser
Aufgaben dienen.

Softwareentwicklung sieht sich traditionell mit einer Trennung zwischen Personen, die mit
Software arbeiten, und Personen, die Software erstellen, konfrontiert. Unter Nutzung von
Unternehmensmodellen eröffnet sich eine Chance, Benutzer enger in den Prozess der Ent-
wicklung und Konfiguration von Software einzubinden. Es ist wünschenswert, Unterneh-
mensmodelle zur Softwareentwicklung methodisch heranzuziehen, denn sobald eine nach-
vollziehbare Beziehung zwischen Unternehmensmodellen und Software-Funktionalität mit
Hilfe einer Entwicklungsmethode etabliert ist, können beteiligte Nutzer die Software selbst
entsprechend ihrer Bedürfnisse mittels Unternehmensmodellierung anpassen, ohne mit
Programmierung oder technischen Details umgehen zu müssen. Das erhöht die Effizi-
enz sowohl bei der Entwicklung als auch Anwendung der Software, denn die Software-
Funktionalität wird aus Anforderungen abgeleitet, die implizit in Unternehmensmodellen
erfasst sind. Eine solche Entwicklungsmethode verspricht außerdem, EIS an dynamische
Veränderungen in Organisationen und deren Umgebung effizienter und kostengünstiger
anpassen zu können. Außerdem wird das Vertrauen in die entwickelte Software wird durch
Einbeziehung von Nutzern in die Anforderungsspezifikaton gestärkt, wenn Anwender und
Leitungsverantwortliche in der Lage sind, die Funktionalität der Software in eigener Ver-
antwortung zu gestalten.

Die nachfolgend dargestellten Forschungen erarbeiten eine Software-Entwicklungsmetho-
de zur Erstellung von EIS aus Unternehmensmodellen. Die Methode ist als generischer
Rahmen entworfen und kann prinzipiell mit jeder Unternehmensmodellierungssprache
verwendet werden, und für jede Zielarchitektur Software erstellen, nach entsprechender
Konfiguration. Grundsätzliche Herausforderungen, die sich beim methodischen Übergang
von konzeptionellen Modellen zu Implementierungsartefakten stellen, werden durch die
Einführung von ergänzenden Zusatzmodellen in den Software-Entwicklungsprozess, so-
wie die Aufteilung des Transformationsverfahrens in mehrere dedizierte Phasen, ange-
gangen. Mit diesem Ansatz wird die Abstraktionslücke zwischen konzeptionellen Unter-
nehmensmodellen und Implementierungsartefakten durch methodische Konzepte syste-
matisch überbrückt, um die Beschreibungsperspektive von der Vogelperspektive der Un-

3



ternehmensmodellierung hin zur internen Systemsicht auf Details eines Softwaresystems
ontologisch zu drehen.

Die erarbeitete Methode erlaubt es, Software-Architekten und -Entwickler effizient durch
den Entwicklungsprozess zu leiten. Sie kann an verschiedenen Stellen konfiguriert werden,
um den Automationsgrad auf einem Kontinuum zwischen einem manuell beaufsichtig-
ten Entwicklungsprozess mit methodisch vorgesehenen manuellen Entwicklungsschritten,
oder einem “zero-coding” Entwicklungsansatz mit 100% Code-Generierung, auszuwäh-
len.

Zur Veranschaulichung der theoretisch eingeführten Konzepte enthält die vorliegende Ar-
beit prototypische Implementierungsbeispiele. Sie demonstrieren die Konfiguration der
Methode mit Modelltransformationen, Modellvalidierungen und domänenspezifischen Mo-
dellierungssprachen, und dienen als erste Anwendungsbeispiele für Unternehmensmodell-
getriebenen Softwareentwicklung mit der Software Engineering with Enterprise Models
(SEEM) Methode.

4



Contents

I Motivation 25

1 Aligning organizational goals and technological infrastructure with model-
driven software development 25

1.1 The vision: software made in a way everyone can understand . . . . . . . 25

1.2 Describing organizations with enterprise models . . . . . . . . . . . . . . 26

1.3 Enterprise information systems for supporting organizational tasks . . . . 29

1.4 Business–IT alignment with methodical support . . . . . . . . . . . . . . 32

1.5 Domain-specific software engineering approaches . . . . . . . . . . . . . 34

1.6 Deriving requirements towards enterprise information systems from enter-
prise models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.7 Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 An overview example: Online web-shop 37

II Approach 45

3 Concepts and terminology 45

3.1 Modeling languages, meta-models and model instances . . . . . . . . . . 45

3.2 Model transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Validity checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Business process models and workflow models . . . . . . . . . . . . . . 52

3.5 Resources and information objects . . . . . . . . . . . . . . . . . . . . . 54

3.6 Perceived type-instance blurring . . . . . . . . . . . . . . . . . . . . . . 57

4 Requirements towards an enterprise model driven engineering approach for
enterprise information systems 60

5 Enterprise models for model-driven software engineering 67

5.1 Organization theory concepts in enterprise modeling languages . . . . . . 67

5.1.1 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5



5.1.4 Business processes . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.5 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Model-driven software engineering as an act of interpretation . . . . . . . 71

5.2.1 Conceptual vagueness in domain-specific modeling languages and
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Incorporating semi-formal interpretation transformations into model-
driven software engineering with domain-specific models . . . . . 73

5.3 Related research and existing approaches . . . . . . . . . . . . . . . . . 73

5.3.1 Model-driven architecture (MDA) . . . . . . . . . . . . . . . . . 73

5.3.2 Rational Unified Process (RUP) . . . . . . . . . . . . . . . . . . 75

5.3.3 Domain-specific software engineering . . . . . . . . . . . . . . . 76

5.3.4 Enterprise architecture . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.5 Business process model execution . . . . . . . . . . . . . . . . . 79

5.3.6 Analyses of business process models . . . . . . . . . . . . . . . 81

5.3.7 Incorporating actor and resource models into software engineering 82

5.3.8 Strategic models for software engineering . . . . . . . . . . . . . 83

5.3.9 Process-centered software engineering environments (PCSEEs) . 84

5.3.10 Self-referential enterprise information systems . . . . . . . . . . 87

5.4 Deficiencies of existing approaches and contributions by the proposed
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

III A Domain-Specific Method for Model-Driven Software Engi-
neering with Enterprise Models 93

6 Method constituents 93

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 Internal enterprise model representation language . . . . . . . . . 93

6.1.2 Implementation strategies and mapping model . . . . . . . . . . 94

6.1.3 Model transformations . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.4 Validity checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.5 APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.6 Code generation templates . . . . . . . . . . . . . . . . . . . . . 95

6.1.7 Tooling support . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.8 Overview on the methodical procedure . . . . . . . . . . . . . . 95

6



6.2 Models and modeling languages . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Enterprise models and their internal representation . . . . . . . . 99

6.2.2 Mapping model . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.3 Implementation strategy models and corresponding modeling lan-
guages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Model transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.1 Adapter transformation for enterprise models . . . . . . . . . . . 120

6.3.2 Mapping model initialization transformation . . . . . . . . . . . 121

6.3.3 Artifact generation and alternative approaches . . . . . . . . . . . 123

6.4 Validity checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.1 Validity check for enterprise models . . . . . . . . . . . . . . . . 125

6.4.2 Validity check for the mapping model . . . . . . . . . . . . . . . 126

6.5 Domain APIs for EIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Applying the method 131

7.1 Applying the method to enterprise information system development . . . 131

7.1.1 Step 1: Create and edit enterprise models . . . . . . . . . . . . 131

7.1.2 Step 2: Transform enterprise models to a internal representation 132

7.1.3 Step 3: Check validity of the enterprise model representation . . 133

7.1.4 Step 4: Initialize or update the mapping model and the implemen-
tation strategy models . . . . . . . . . . . . . . . . . . . . . . . 133

7.1.5 Step 5: Manually edit the mapping model and the implementation
strategy models . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1.6 Step 6: Check validity of the mapping model and the implemen-
tation strategy models . . . . . . . . . . . . . . . . . . . . . . . 135

7.1.7 Step 7: Generate deployable artifacts . . . . . . . . . . . . . . . 135

7.2 Configuring the method to be used with a specific enterprise modeling
language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.1 Step 1: Identify language concepts equivalent in EML and EEM . 137

7.2.2 Step 2: Implement transformation rules for equivalent language
concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.3 Step 3: Formulate hints to express other EEM concepts in EML . 137

7.2.4 Step 4: Implement transformation rules for other language con-
cepts via hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Configuring the method for specific target architectures . . . . . . . . . . 140

7.3.1 Step 1: Conceptualize a target architecture API . . . . . . . . . . 141

7



7.3.2 Step 2: Implement the target architecture API . . . . . . . . . . . 142

7.3.3 Step 3: Meta-model architecture-specific process-step implemen-
tation strategy types . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3.4 Step 4: Meta-model architecture-specific event implementation
strategy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3.5 Step 5: Meta-model architecture-specific actor implementation strat-
egy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3.6 Step 6: Meta-model architecture-specific resource implementation
strategy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3.7 Step 7: Meta-model architecture-specific information resource im-
plementation strategy types . . . . . . . . . . . . . . . . . . . . . 146

7.3.8 Step 8: Meta-model architecture-specific sequence implementa-
tion strategy types . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.9 Step 9: Conceptualize hints at choosing default implementation
strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.10 Step 10: Implement hints at choosing default implementation strate-
gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.11 Step 11: Implement code generation templates for generic imple-
mentation strategies . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3.12 Step 12: Implement code generation templates for architecture-
specific implementation strategies . . . . . . . . . . . . . . . . . 152

8 Design of a prototypical enterprise information system 162

8.1 General architectural design considerations . . . . . . . . . . . . . . . . 163

8.1.1 Coordination in a distributed environment . . . . . . . . . . . . . 163

8.1.2 Realizing data storages . . . . . . . . . . . . . . . . . . . . . . . 165

8.1.3 Automatically executed process-steps . . . . . . . . . . . . . . . 166

8.2 User interface sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.2.1 Process instance management functionality . . . . . . . . . . . . 167

8.2.2 Process-step editor functionality . . . . . . . . . . . . . . . . . . 168

8.2.3 Information access and document editing functionality . . . . . . 168

8.2.4 Manual task handling functionality . . . . . . . . . . . . . . . . 169

8.2.5 Decision functionality . . . . . . . . . . . . . . . . . . . . . . . 169

8.2.6 Communication functionality . . . . . . . . . . . . . . . . . . . 170

8.2.7 Project specific functionality . . . . . . . . . . . . . . . . . . . . 171

8.3 Abstract domain API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8



8.3.1 Front-end API interfaces . . . . . . . . . . . . . . . . . . . . . . 172

8.3.2 Back-end API interfaces . . . . . . . . . . . . . . . . . . . . . . 175

9 Example implementation strategies 180

9.1 Implementation strategies for process-members . . . . . . . . . . . . . . 180

9.1.1 Interactive process-steps . . . . . . . . . . . . . . . . . . . . . . 180

9.1.2 Additional high-level process-member implementation strategies . 184

9.1.3 Automatic process-steps . . . . . . . . . . . . . . . . . . . . . . 186

9.1.4 Event implementation strategies . . . . . . . . . . . . . . . . . . 189

9.1.5 Sequence implementation strategies . . . . . . . . . . . . . . . . 190

9.2 Implementation strategies for actors . . . . . . . . . . . . . . . . . . . . 196

9.3 Resource implementation strategies . . . . . . . . . . . . . . . . . . . . 197

9.3.1 Information resource implementation strategies . . . . . . . . . . 198

9.3.2 Software resource implementation strategies . . . . . . . . . . . 202

9.3.3 Physical resource implementation strategies . . . . . . . . . . . . 204

9.3.4 Resource access implementation strategies . . . . . . . . . . . . 205

IV Applying the Method: Prototypical Design and Implementa-
tion 213

10 Example scenario of a BPEL-orchestrated SOA target application architec-
ture 213

10.1 Application scenario in the food supply chain domain . . . . . . . . . . . 213

10.2 Domain-specific language for supply chain modeling . . . . . . . . . . . 214

10.3 A distributed service oriented architecture (SOA) . . . . . . . . . . . . . 216

10.4 Implementation strategy meta-model for a SOA platform . . . . . . . . . 216

10.5 Executable BPEL workflow . . . . . . . . . . . . . . . . . . . . . . . . . 220

10.6 Overall implemented example . . . . . . . . . . . . . . . . . . . . . . . 225

11 MEMO enterprise models for developing JSP web applications 228

11.1 Adapting the MEMO enterprise modeling method . . . . . . . . . . . . 228

11.1.1 The MEMO language family as input enterprise modeling languages228

11.1.2 MEMOCENTERNG as editor application . . . . . . . . . . . . . 228

11.1.3 Adapter transformation to configure the method for the MEMO
language family . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9



11.2 Configuring a JSP web-application target architecture . . . . . . . . . . . 230

11.2.1 Example implementation strategy meta-model for a JSP web-application
platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

12 Code generation and tooling support 233

12.1 Deriving executable artifacts . . . . . . . . . . . . . . . . . . . . . . . . 233

12.2 Code generation templates . . . . . . . . . . . . . . . . . . . . . . . . . 234

12.3 Requirements towards tooling support . . . . . . . . . . . . . . . . . . . 235

12.4 Enterprise modeling with the MEMOCENTERNG platform . . . . . . . 236

12.5 Tooling on top of the ECLIPSE MODELING FRAMEWORK (EMF) . . . . 237

12.5.1 Mapping model editor . . . . . . . . . . . . . . . . . . . . . . . 237

12.5.2 Implementation strategy meta-modeling with ECORE . . . . . . . 238

12.5.3 Model-to-model transformations with the XTEND language . . . 238

12.5.4 Model-checking with the CHECK language . . . . . . . . . . . . 240

12.5.5 Code generation with XPAND templates . . . . . . . . . . . . . . 240

12.5.6 GUI components to invoke the transformation steps in the method 242

12.5.7 EEM model editor for test purposes . . . . . . . . . . . . . . . . 243

V Reflection 245

13 Evaluation 245

14 Remaining Work 255

A Example software artifacts 257

A.1 Source code packages of the provided examples . . . . . . . . . . . . . . 257

A.1.1 Package de.gulden.modeling.seem.eem . . . . . . . . . . . 257

A.1.2 Package de.gulden.modeling.seem.generator . . . . . . . 258

A.1.3 Package de.gulden.modeling.seem.generator.memo . . . 258

A.1.4 Package de.gulden.modeling.seem.generator.ui . . . . 258

A.1.5 Package de.gulden.modeling.seem.mapping . . . . . . . . 258

A.1.6 Package de.gulden.modeling.seem.workflow . . . . . . . 258

A.1.7 Package de.gulden.modeling.seem.architecture.web . . 259

A.1.8 Package de.gulden.server.xmldb . . . . . . . . . . . . . . . 259

A.1.9 Package org.rescueit.modeling.targetarchitecture . . 259

10



A.1.10 Package org.rescueit.modeling.workflow . . . . . . . . . 259

A.1.11 Package de.gulden.modeling.seem.api.web . . . . . . . . 260

A.1.12 Package de.gulden.modeling.seem.example.webshop . . 260

A.1.13 Package webshop . . . . . . . . . . . . . . . . . . . . . . . . . 260

A.2 Example artifacts overview . . . . . . . . . . . . . . . . . . . . . . . . . 260

A.3 Introductory example artifacts . . . . . . . . . . . . . . . . . . . . . . . 264

A.3.1 Adaptation to the MEMO enterprise modeling languages . . . . . 265

A.3.2 Mapping model handling . . . . . . . . . . . . . . . . . . . . . . 270

A.3.3 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . 278

A.3.4 Generated example artifact . . . . . . . . . . . . . . . . . . . . . 290

A.3.5 Modeling conventions to incorporate additional semantics into the
enterprise models . . . . . . . . . . . . . . . . . . . . . . . . . . 292

A.4 Artifacts of the comprehensive example . . . . . . . . . . . . . . . . . . 294

A.4.1 Adaptation to a domain-specific supply chain modeling language 294

A.4.2 Mapping model handling . . . . . . . . . . . . . . . . . . . . . . 296

A.4.3 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . 300

A.4.4 Input model and generated example artifacts . . . . . . . . . . . 305

11



List of Figures

1 Action system and information system as interwoven human-task-technology
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Business process model of an online order process . . . . . . . . . . . . . 38

3 Organization model according to the example process . . . . . . . . . . . 39

4 Allocation models according to the business process-steps and resources . 40

5 Architecture of a Java Server Pages (JSP) based application as generation
target for the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Mapping model with links to elements from the conceptual model and the
implementation strategy model . . . . . . . . . . . . . . . . . . . . . . . 43

7 Code generation templates of the example project inside editor application 44

8 Graphical user interface of the developed software application . . . . . . 44

9 Meta-meta-model, meta-model, and model instance levels, with example
model types used in the presented method . . . . . . . . . . . . . . . . . 47

10 Relationships between modeling languages, model instances, model trans-
formation specification languages, model transformation specifications and
model transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11 Model-transformation-pattern . . . . . . . . . . . . . . . . . . . . . . . . 50

12 Conceptual business process model versus implementation-oriented exe-
cutable workflow model . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

13 Relationship between process type declaration and process instances, with
information from process logs for an ex-post representation of process in-
stances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

14 Basic architectural pattern of a self-referential enterprise system . . . . . 87

15 Steps performed when applying the method . . . . . . . . . . . . . . . . 97

16 Entire meta-model for internal enterprise model representation . . . . . . 101

17 Abstract superclasses defining common attributes of elements . . . . . . . 102

18 Meta-constructs to model the actor perspective . . . . . . . . . . . . . . 103

19 Meta-constructs to model the process perspective . . . . . . . . . . . . . 105

20 Meta-constructs to model the resource perspective . . . . . . . . . . . . . 107

21 Pattern of a single mapping association . . . . . . . . . . . . . . . . . . . 109

22 Excerpt of the mapping meta-model showing the use of implementation
strategy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

23 Entire meta-model specifying the core concepts of the mapping model lan-
guage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

12



24 Implementation strategy specification in a mapping model editor, using
dynamic parameter resolving . . . . . . . . . . . . . . . . . . . . . . . . 130

27 Create and edit enterprise models . . . . . . . . . . . . . . . . . . . . . 132

31 Generate deployable artifacts . . . . . . . . . . . . . . . . . . . . . . . . 136

34 Enriching an enterprise model with additional semantics via a comment
text hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

25 Overall methodical procedure . . . . . . . . . . . . . . . . . . . . . . . . 153

26 Software development using the configured method . . . . . . . . . . . . 154

28 Cycle of editing, transforming, and checking conceptual models . . . . . 155

29 Process of manually editing the mapping model . . . . . . . . . . . . . . 156

30 Cycle of initializing or updating a mapping model, manually revising it,
and automatically checking its validity . . . . . . . . . . . . . . . . . . . 157

32 Taking the decision to adapt the method to a set of enterprise modeling
languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

33 Sub-process to adapt the method to a set of enterprise modeling languages 159

35 Taking the decision to adapt the method to a new target architecture . . . 160

36 Sub-process to adapt the method to a new target architecture . . . . . . . 161

37 Distributed components in a client-server architecture . . . . . . . . . . . 164

38 Schematic sketch of an abstract user interface with generic interaction
functionality for an EIS front-end . . . . . . . . . . . . . . . . . . . . . . 167

40 Front-end API interfaces for distributed EIS applications . . . . . . . . . 172

41 Back-end API interfaces for a central coordination server for distributed
EIS applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

39 API interfaces to implement EIS functionality . . . . . . . . . . . . . . . 179

43 Meta-model excerpt specifying platform-independent user decision imple-
mentation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

44 Meta-model excerpts specifying more platform-independent user interac-
tion implementation strategies . . . . . . . . . . . . . . . . . . . . . . . 182

45 Meta-model excerpt specifying platform-independent high-level process-
steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

46 Meta-model excerpt specifying platform-independent automatic process-
steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

47 Meta-model excerpt specifying platform-independent event implementa-
tion strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

48 Meta-model specifying platform-independent control flow implementa-
tion strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

13



49 Meta-model excerpt specifying platform-independent implementation strate-
gies for actor resolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

50 Meta-model specifying platform-independent implementation strategies
for conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

51 Meta-model excerpt specifying platform-independent implementation strate-
gies for actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

52 Meta-model excerpt specifying platform-independent information types . 200

53 Meta-model excerpt specifying platform-independent information storage
implementation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 201

54 Meta-model excerpt specifying platform-independent software resource
implementation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 204

55 Meta-model excerpt specifying the physical resource implementation strat-
egy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

56 Meta-model excerpt showing the basic pattern of an AbstractPro-
cessMemberImplementation strategy referencing resource source
and resource target accesses . . . . . . . . . . . . . . . . . . . . . . . . 206

42 Entire meta-model specifying platform-independent implementation strate-
gies for process-members . . . . . . . . . . . . . . . . . . . . . . . . . . 209

57 Meta-model excerpt specifying platform-independent storable information
object access implementation strategies . . . . . . . . . . . . . . . . . . 210

58 Entire meta-model specifying platform-independent implementation strate-
gies for resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

59 Excerpt of an example food supply chain model in a domain-specific mod-
eling language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

60 Conceptualizations of the distributed architecture, a) original peer-to-peer
setting, b) using ESB proxies to securely interconnect existing legacy sys-
tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

61 Core concepts of the implementation strategy meta-model for describing
a SOA environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

62 Entire implementation strategy meta-model for describing the example
SOA target architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

63 Example implementation strategy model instance in the language defined
by the implementation strategy meta-model . . . . . . . . . . . . . . . . 222

64 Excerpt of a visual representation of the generated executable BPEL work-
flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

65 Excerpt of a graphical model representation of the generated WSDL inter-
face declaration for the BPEL process . . . . . . . . . . . . . . . . . . . 224

66 Overview on the implemented example method components and steps . . 226

14



67 Excerpt from a MEMO process control flow model referencing elements
from other perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

68 Example implementation strategy meta-model for a web application archi-
tecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

69 Enterprise model editors in MEMOCENTERNG . . . . . . . . . . . . . 236

70 Mapping model tree structure editor, with references to separate model
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

71 Editors for XTEND and XPAND scripts in the development environment . 241

72 Built-in menu functionality in the ECLIPSE environment to invoke trans-
formations and validity checks of the method . . . . . . . . . . . . . . . 242

73 Menu and toolbar in the ECLIPSE environment to invoke transformations
and validity checks in the method . . . . . . . . . . . . . . . . . . . . . . 243

74 Model editors for the internal EEM representation of enterprise models . 244

15



List of Tables

1 Matrix of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Button symbols representing the method’s transformations and validity
checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

3 Evaluation overview on how requirements are met by the approach . . . . 246

16



List of Listings

1 memo2eem.ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

2 01–run–adaptEM.mwe . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

3 checkEM.chk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

4 checkEMConstraints.chk . . . . . . . . . . . . . . . . . . . . . . . . . . 268

5 02–run–checkEM.mwe . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

6 initMapping.ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

7 initMappingWeb.ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

8 03–run–initMapping.mwe . . . . . . . . . . . . . . . . . . . . . . . . . 272

9 03–run–updateMapping.mwe . . . . . . . . . . . . . . . . . . . . . . . . 274

10 checkMapping.chk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

11 checkMappingConstraints.chk . . . . . . . . . . . . . . . . . . . . . . . 276

12 04–run–checkMapping.mwe . . . . . . . . . . . . . . . . . . . . . . . . 277

13 web/main.xpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

14 common.ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

15 05–run–generator.mwe . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

16 workflow.properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

17 conventions.properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

18 webshop.process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

19 webshop.organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

20 webshop.resml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

21 webshop.eem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

22 webshop.mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

23 index.jsp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

24 scm–to–eem.xslt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

25 01–run–adaptEM.mwe . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

26 initMappingSOA.ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

27 03–run–initMapping.mwe . . . . . . . . . . . . . . . . . . . . . . . . . 298

28 04–run–checkMapping.mwe . . . . . . . . . . . . . . . . . . . . . . . . 299

29 soa/main.xpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

30 05–run–generator.mwe . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

31 00–run–all.mwe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

32 workflow.properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

17



33 conventions.properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

34 GermanScenarioIceCream.xml . . . . . . . . . . . . . . . . . . . . . . . 305

35 SupplyChainProcess.bpel . . . . . . . . . . . . . . . . . . . . . . . . . . 306

36 SupplyChainProcessArtifacts.wsdl . . . . . . . . . . . . . . . . . . . . . 307

37 SupplyChainProcessSchema.xsd . . . . . . . . . . . . . . . . . . . . . . 308

38 cardinalitiesToConstraints.xpt . . . . . . . . . . . . . . . . . . . . . . . 309

39 run–cardinalitiesToConstraints.mwe . . . . . . . . . . . . . . . . . . . . 310

18



Acronyms

API application programming interface

BLOB binary large object

BPEL Business Process Execution Language

BPM business process model

BPML business process modeling language

BPMN Business Process Modeling Notation

CIM computation independent model

CNC computer numerical control

CORBA Common Objects Request Broker Architecture

COTS commercial off-the-shelf

DBMS database management system

DDL data definition language

DSM domain-specific modeling

DSML domain-specific modeling language

DSSE domain-specific software engineering

EA enterprise architecture

EBNF Enhanced Backus-Naur Form

EEM extracted enterprise model

EIS enterprise information system

EM enterprise model

EMDSE enterprise model-driven software engineering

EME enterprise modeling environment

EMF Eclipse Modeling Framework

EML enterprise modeling language

EPC event-driven process chain

19



ESB enterprise service bus

GMF Graphical Modeling Framework

GPML general purpose modeling language

GUI graphical user interface

HTTP Hyper-Text Transfer Protocol

IDE integrated development environment

IP Internet Protocol

ISS information systems science

IT information technology

JSP Java Server Pages

MDA Model-Driven Architecture

MDD model-driven development

MDSE model-driven software engineering

MEMO Multi-Perspective Enterprise Modeling

MML MEMO Meta-Modeling Language

MWE Modeling Workflow Engine

OMG Object Management Group

ORB object request broker

OSGi Open Services Gateway initiative

P2P peer-to-peer

PAIS process-aware information system

PCSEE process-centered software engineering environment

PIM platform independent model

PPC production planning and control

PSM platform specific model

20



RBAC role-based access control

RUP Rational Unified Process

SAM Strategic Alignment Model

SEEM Software Engineering with Enterprise Models

SOA service oriented architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

UML Unified Modeling Language

URI uniform resource identifier

WfM workflow model

WfMS workflow management system

WSDL Web Services Description Language

WWW World Wide Web

XMI XML Metadata Interchange

XML Extensible Markup Language

XPDL XML Process Definition Language

XSD XML Schema Definition

XSLT Extensible Stylesheet Language Transformations

Abbreviations

e. g. for example

etc. et cetera

i. e. that means

21



Printing conventions

Some conventions apply to the character style used for printing text:

Method-specific terms appear in sans-serif font. These are, e. g., technical terms, or names
of components of the described method.

Formal identifiers are written in monospace font. These are, e. g., names of model
elements or program code declarations.

“Inline citations”, written in double-quotation marks, mark citations from other authors,
in cases where they appear together with a citation reference in square braces.

“Phrases in natural language” are also written in double-quotation marks, they refer to
natural language semantics which is not reflected by formal model elements, and appear
without a reference to a citation source.

PERSON NAMES, PRODUCT NAMES or other named components with a non-technical
identifier are written in small capitals.

Highlighted wordings are emphasized by an italic font setting.

22



Matrix of Contents

Analysis Design Implementation

M
et

a²

1 Aligning organizational goals
and technological infrastructure
with model-driven software
development
1.1 The vision: software made in a
way everyone can understand
1.2 Describing organizations with
enterprise models
1.3 Enterprise information systems
for supporting organizational tasks
1.4 Business–IT alignment with
methodical support
1.5 Domain-specific software
engineering approaches
1.6 Deriving requirements towards
enterprise information systems
from enterprise models
1.7 Structure of this work
2 An overview example: Online
web-shop

6 Method constituents
6.1 Overview
6.2 Models and modeling
languages
6.3 Model transformations
6.4 Validity checks
6.5 Domain APIs for EIS

9 Example implementation
strategies
9.1 Implementation strategies for
process-members
9.2 Implementation strategies for
actors
9.3 Resource implementation
strategies

M
et

a

3 Concepts and terminology
3.1 Modeling languages,
meta-models and model instances
3.2 Model transformations
3.3 Validity checks
3.4 Business process models and
workflow models
3.5 Resources and information
objects
3.6 Perceived type-instance
blurring
4 Requirements towards an
enterprise model driven
engineering approach for enterprise
information systems

7 Applying the method
7.1 Applying the method to
enterprise information system
development
7.2 Configuring the method to be
used with a specific enterprise
modeling language
7.3 Configuring the method for
specific target architectures

10 Example scenario of a
BPEL-orchestrated SOA target
application architecture
10.1 Application scenario in the
food supply chain domain
10.2 Domain-specific language for
supply chain modeling
10.3 A distributed service oriented
architecture (SOA)
10.4 Implementation strategy
meta-model for a SOA platform
10.5 Executable BPEL workflow
10.6 Overall implemented example
11 MEMO enterprise models for
developing JSP web applications
11.1 Adapting the MEMO
enterprise modeling method
11.2 Configuring a JSP
web-application target architecture

In
st

an
ce

5 Enterprise models for
model-driven software engineering
5.1 Organization theory concepts
in enterprise modeling languages
5.2 Model-driven software
engineering as an act of
interpretation
5.3 Related research and existing
approaches
5.4 Deficiencies of existing
approaches and contributions by
the proposed method

8 Design of a prototypical
enterprise information system
8.1 General architectural design
considerations
8.2 User interface sketch
8.3 Abstract domain API

12 Code generation and tooling
support
12.1 Deriving executable artifacts
12.2 Code generation templates
12.3 Requirements towards tooling
support
12.4 Enterprise modeling with the
MEMOCENTERNG platform
12.5 Tooling on top of the ECLIPSE
MODELING FRAMEWORK (EMF)
13 Evaluation
14 Remaining Work

Table 1: Matrix of contents



24



Part I

Motivation
I’ve been doing research for years

I’ve been practicing my ass off
Alanis Morissette, “Eight Easy Steps” from the album “So-Called Chaos”, 2004

1 Aligning organizational goals and technological infrastructure with
model-driven software development

1.1 The vision: software made in a way everyone can understand

An organization is a system of people with individual and shared goals, who perform ac-
tions with commonly shared resources, in an environment shaped by mutually established
rules and traditions.

Taking part in an organization, as well as managing and steering the organization, requires
the involved actors to have knowledge about tasks, responsibilities, resources and rules
they deal with as part of their contribution to the overall organization. Everybody involved
in an organization needs an appropriate degree of information about themselves being em-
bedded in the organizational environment they act in. They also need to have knowledge
about tasks and responsibilities of other participants in the organization, in order to effi-
ciently interact with them. Every actor in an organization has a notion of the action system
he or she is embedded in, as a very basic fundamental prerequisite to successfully be a part
of the organization. An action system is an organization with its tasks, actors, resources
and rules. Human actors take part in this organizational system, as well as automatic
components and immaterial rules and goals.

Knowledge about an organization typically gets communicated in terms of processes per-
formed by the organization, including information about the human actors carrying out
individual tasks and actions, machinery and software that are required to perform these
actions, resources that are involved, and rules and regulations that are obeyed when per-
forming these action steps. Descriptions of these kinds have traditionally been commu-
nicated by diagram drawings or in text documents. They make use of conceptualizations
around organizational roles, responsibilities, rules, tasks and resources. Economics and
management sciences have formed to professionally handle these terms, and to use them
for descriptive and prescriptive reflections on organizations. From these research areas,
methods and theories have evolved about how to successfully structure organizations, for-
mulate strategic goals, and set up efficient processes. The terminology behind this research
thus provides an elaborated framework of concepts to express and handle knowledge about
organizational structure and behavior.

25



Members of an organization use these commonly understood concepts, to create descrip-
tions of organizational incidents and circumstances. They can do this with the help of
enterprise modeling languages (EMLs), which typically provide graphical means for ex-
pressing knowledge about organizations with concepts originating from the professional
terminology. As a result, a set of interrelated enterprise models is created. Given suitable
methodical support, this set of models can automatically be consulted to configure and
create software, which provides automatic support for carrying out the modeled processes
in the organization.

If such a method can be provided, which allows to derive software from the knowledge in
enterprise models, a new level of methodical software development can be reached, allow-
ing everybody to configure his or her own EISs without programming, just by specifying
desired tasks through visual domain-specific models, with a set of human-understandable,
domain-specific concepts.

The upcoming research work suggests a software development method, which allows for
exploiting the knowledge contained in enterprise models, to develop EISs for supporting
organizational tasks and modeled processes of the organization. Depending on its con-
figuration, the method can either fully automatically support the creation of EISs from
enterprise models, or can provide systematic guidance in performing manual development
steps throughout the development process. The research results achieved will contribute
to a deeper understanding of how prospective users of software systems can be involved
in software engineering, and are one step forward towards creating software in a way ev-
eryone can understand [Kro07].

1.2 Describing organizations with enterprise models

Business enterprises and other kinds of organizations are socio-technical systems, which
are subject to various external and internal influences. A socio-technical system consists
of human actors and technical constituents. The technical constituents, e. g., informa-
tion systems, form the infrastructure on which the collaborative actions are performed by
humans. The human actors typically do not only pursue the organization’s goals, but ad-
ditionally have individual goals and responsibilities, which they try to accomplish. Due to
a multitude of dependencies among human actors and information systems, the qualitative
complexity of an organization increases exponentially in relation to its quantitative scale.
This means, while an organization develops and matures, it continuously becomes more
difficult to oversee the relation between its intended goals on the one hand, and the actual
implementation of operations that are performed to achieve these goals on the other hand.

To align the structure and behavior of a continuously maturing organization with its strate-
gic goals, cognitive support is required to gain insight into the current situation of an
organization, as well as into possible future constellations. Due to the high degree of in-
terdependency and meshed complexity, such means cannot be provided by generic instru-
ments of communication, e. g., by using linear natural language. Instead, an instrument
to cope with these tasks is required to provide the required semantic expressiveness for

26



knowledge explication. Such support is available through the use of enterprise models
(EMs) [Fra94, Gro04, Rol00].

Enterprise models contain knowledge about the business processes performed in an orga-
nization, the actors and resources involved, organizational and operational responsibilities,
and other aspects of how an enterprise works. When sensefully put together, these different
aspects, also called perspectives or dimensions of an organization, provide a comprehen-
sive multi-perspective view on an organization. This entire view cannot be achieved by a
single type of model with a single modeling language, because the interwoven aspects of
structure, dynamics, rules, etc., are too complex to be expressed without clean methodi-
cal distinction from other perspectives. As a consequence, multiple kinds of models are
used to capture knowledge about the interrelated different perspective, and most enterprise
modeling methods and enterprise architecture (EA) approaches suggest the use of multi-
ple interrelated modeling languages to form a whole set of EMs. This general approach
dates back to first enterprise modeling and EA methods, beginning with the ZACHMAN
FRAMEWORK [Zac87], it characterizes the TOGAF standard [Gro04], and shapes prod-
ucts like the ARIS TOOLSET [Sch02b], the newly standardized ARCHIMATE [Lan09], and
MULTI-PERSPECTIVE ENTERPRISE MODELING (MEMO) [Fra12].

Advanced enterprise modeling methods use interrelated multiple perspectives by incorpo-
rating multiple diagram types, which are internally related on the level of language design
to allow sharing of identical concepts in multiple perspectives. This is vital to ensure
semantic integrity among multiple perspectives, since referenced concepts from other per-
spectives are ensured to be further explicated in their own designated perspective. By
incorporating knowledge from multiple perspectives of an enterprise, EMs contain a set of
relevant facts not only about the organization as a socio-technical action system itself, but
also about the desired functionality of software used for supporting the enterprise.

EMs are typically created and maintained by people who are familiar with the organiza-
tion in focus, e. g., by employees or members of the organization, managers, or by external
analysts, who have previously examined parts of the organization. These involved people,
each one representing one view on specific requirements expressed in EMs, are the stake-
holders in the modeling process.

Enterprise models are typically composed of graphical symbols on a visual diagram plane.
To achieve an appropriate level of abstraction and understandability, enterprise modeling
languages (EMLs) can be designed as domain-specific languages, which provide desig-
nated language concepts that facilitate modeling strategic goals, organizational structure,
and operational behavior of organizations. The graphical symbols and the terminology
that make up an EML are intended to allow involved stakeholders to gain a sufficient un-
derstanding of their area of interest represented in the enterprise models. This is especially
relevant for those stakeholders with no formal sciences background, which is usually the
majority of people in an organization. For this reason, it is recommended to use visual
symbols that show well-known metaphors, and to label the model element types using a
familiar terminology from the organization’s environment.

EMs, as understood in the context of this work, are used for describing parts of organiza-
tions on an abstract level. Such descriptions cover relevant goals and missions of an orga-

27



nization, as well as its structural composition and processes that are performed to achieve
the goals [SS05, Fra12]. Typically, an organization is not modeled entirely, but only those
aspects are documented via models, which are subject to further planning, analysis, or
software development. The term “enterprise” is understood as a synonym for “organiza-
tion” in this work, there is no additional semantics attached to “enterprise” in comparison
to “organization”. Using the word “enterprise” neither implies any relationship to a com-
mercially oriented organization, nor does it state anything about the size and complexity
of the organization in question.

Some notions of enterprise models also include technical software models into the set of
different perspectives, arguing that supporting software components are part of an enter-
prise in a way comparable to resources, processes, etc., and, as a consequence, they should
be modeled as part of the set of enterprise models using traditional software system mod-
eling techniques, such as the Unified Modeling Language (UML) [BJR99]. From such
a point of view, a set of enterprise models consists of organization models, as well as of
technical system models, which are both subsumed under the notion of enterprise mod-
els. The term “enterprise model”, as used throughout this work, however, more closely
denotes the notion of organization models, and does not cover technical system models.
Instead, from the point of view of the work at hand, those software systems supporting
an organization’s work should not be modeled using traditional modeling techniques, they
should rather be described in terms of implementation decisions explicitly related to the
conceptual elements of the enterprise models, which is one of the main methodical pro-
posals introduced by this work, the Software Engineering with Enterprise Models (SEEM)
method.

To edit EMs, software tools are required, which make the contents of EMs accessible to
users. While for pure documentation and communication purposes, a drawing editor would
be sufficient, the full range of methodical value of enterprise modeling can only be gained,
if dedicated model editors are used, which internally represent the formal semantics of
the models, not only their graphical appearance in the diagram [GF10]. Once internal
representations of the formal model semantics are available, i. e., the elements of enterprise
models and their relationships are stored as a data structure in an object-graph, and not
only as arbitrary graphical objects on a diagram plane, enterprise models are accessible to
queries, analyses, and all kinds of automatic processing. This opportunity spans a bridge
from a human-understandable description of an organization, to a systematic interpretation
of this description for interfacing with technology.

Creating enterprise models with domain-specific languages fosters the separation of con-
cerns between on the one hand incorporating general principles of the modeled domain on
the language level, and on the other hand creating model instances that accurately describe
a subject’s perceived reality about real world constellations of concrete enterprises. The
tasks of creating and editing model instances can be best performed by the stakeholders
who are themselves involved in the organization. The upstream task of language design,
however, is a genuine academic challenge to be carried out carefully with support of sci-
entific research. This separation of concerns makes the use of enterprise modeling meth-
ods efficient and attractive for practical use. Modelers can rely on previously elaborated
domain-specific languages, so the responsibility for ensuring semantic integrity and under-

28



standability among different groups of stakeholders is shifted to the process of language
creation, making the use of individual models more efficient and less prone to errors.When
models of enterprises and organizations are to applied with methodical support in a way
understandable for all stakeholders, the use of elaborate domain-specific enterprise mod-
eling languages thus is a first choice approach.

The range of possible uses of enterprise models is broad, once a coherent set of mod-
els from interrelated perspectives is available and maintained using domain-specific lan-
guages. Besides serving as means for communication, enterprise models can be utilized
to develop information systems, which supply the described organization’s tasks, e. g.,
by deriving executable workflow descriptions from business process models [ODvdA+09,
RM06]. They can furthermore be used reflectively as tools to access information about
operative systems and organizational entities represented in the models [FS09]. When
applied in such a manner, enterprise models are no longer used for capturing knowledge
from different perspectives to make it commonly accessible for diverse stakeholders, but
they now serve as a repository of knowledge from which different stakeholders with their
individual concerns can extract modeled facts and relate operational information to them.

1.3 Enterprise information systems for supporting organizational tasks

Enterprise information systems (EISs) are software systems for supporting the work of or-
ganizations, more precisely, supporting people in an organization to carry our their work-
ing tasks, in interaction with other people, and with automatic systems. EISs provide
multiple variants of functionality, one of which is to guide human users through a se-
quence of working steps in regularly repeated business processes. In order to achieve this,
the system must know about the user’s role in the organization, the business processes he
or she is involved in, and the resources that are used when performing individual steps in
the processes. This also incorporates knowledge about collaboration relationships among
multiple actors in commonly performed business processes, the order in which individual
working steps are performed, and conditions under which parts of a business process are
performed or skipped [Wes07]. Users access an EIS via front-end applications, typically
in a distributed and shared environment. These front-end applications inform the user
about which processes are to be performed, and which process-steps are to be taken next.
E. g., a front-end application may display a “to-do” list to the user, indicating the steps
of action that the user is expected to work on next. Once a working step is performed,
the user notifies the system about completing the task, and in turn gets informed about
possible subsequent working steps. If decisions are required to determine the following
working steps, which cannot automatically be taken, the user is asked by the EIS to enter
the appropriate decision interactively.

Besides guiding through sequences of working steps, an EIS typically contains support
functionality for performing the individual working steps directly with the help of the EIS
front-end application, or integrated applications invoked by the EIS. One typical example
of such functionality is to provide access to information resources that are shared among
multiple members of an organization [FC08]. To access these resources, an EIS can inte-

29



grate viewers and editors for information objects, and can handle authenticated access to
these information objects. When invoking external applications as part of the supportive
work coordination, a vast amount of integration options exist with respect to achieving data
integration, functional integration, process integration, propagation of security rights, and
several other organizational and technological aspects of enterprise application integration
[RMB01, Ver96].

A third building block of an EIS’s functionality is the coordination of automatic process-
ing steps where possible and desired. Automatic processing might either be performed
by including automatic functionality directly in the EIS application, or by invoking exter-
nal software components. The EIS bridges between human working steps and automatic
processing, passing human input to automatic components, and re-injecting the results
of automatic processing into the user’s workflow. Automatic processing may influence,
which further working steps are to be performed, or may result in information objects,
which are subject to further handling by human actors or software components.

In addition to these core features, EISs may offer organization-specific features which are
uniquely linked to the specific goals and competitive advantages of an organization. See
Sect. 4 for a detailed analysis of requirements towards an EIS.

Traditional business conceptualizations regard EISs as a kind of information technology
(IT) resources that are involved when performing specific processes [FC08]. However,
this conceptualization does not allow for understanding EISs as a kind of formal represen-
tation of parts of the organization itself. Since EISs are actively acting automatic entities
inside the organization, these entities necessarily encapsulate formal knowledge about the
organizational action system and the process contexts they are applied in. In this sense,
EISs are more than production resources to foster efficient process execution. They both
reflect and shape the processes they are involved in. As linguistic constructions, they are
derived from human perceptions of the world [Fra11d], which in turn have repercussions
on the perceived reality once they are available as implemented technical artifacts.

As a consequence, in descriptions of an organization’s action system, there is an internal
connection between the action system described, and EISs that occur as part of these de-
scriptions. Whenever an EIS is incorporated in the description of an organization’s action
system, it can be inherently assumed that the EIS contains formal internal descriptions of
selected aspects of the action system, too, since otherwise the software could not success-
fully contribute to the processes it is intended to support.

EISs necessarily need to represent knowledge about the processes in an organization, and
about how human actors and automatic components interact. In this respect, EISs are
software representations of organizational structure and processes, like EMs are human
readable representations of the same objects of interest. This connection makes it attractive
to reason about a software development approach which interconnects both EMs and EISs,
as it is carried out in this work, and justifies the assumption that it is possible to derive
formal software system descriptions from organization models using a defined engineering
method.

The development method to be elaborated has the purpose to bridge the business conceptu-
alizations, as they are provided through enterprise models, to a formal description of a sys-

30



tem’s inner perspective given in technical software terms. Both kinds of descriptions are
formulated in diverse languages and terminologies, one using business-related concepts
to describe an action system from an outer organizational perspective, the other focusing
on technical means for structuring a software system from its inner technical perspective.
Still, on the description level, both modes represent alternative ways to express knowledge
about those aspects, which are supported by EISs. The ’double-nature’ of both description
approaches, with their divergent terminology and concepts, is depicted in Fig. 1.

Goals Tasks Actors Roles Responsibilities

Activities Procedures RegulationsIndicators Control

Action System (Organization)

Function Component System Architecture Data Program

Class Object HardwareSoftware Interface

Information System (Software)

Source Code

Service

Figure 1: Action system and information system as interwoven human-task-technology
system (according to ULRICH FRANK)

The software systems integrated by an EIS may be components of different kinds, e. g.,
back-end accounting systems, bookings systems or database management applications.
Individual front-end workplace applications may also be integrated, such as office appli-
cations to present and edit information in documents. Even machine control software such
as software for computation independent model (CIM) [Ver96, Wal92] may be subject to
integration by a comprehensive EIS in a production industry context.

By integrating software components in a way specific to the processes of an organization,
EISs form compound software systems of higher complexity and specificity than generic
software tools potentially can. Having access to such a system might turn out to be a
relevant competitive advantage for an organization.

From the perspective of a human user, an EIS provides access points for the individual to
interact with the organization. To be able to provide this functionality, EISs expose front-
end functionality to users, while at the same time they include back-end functionality to
represent process knowledge, and to interoperate with other applications. Interaction with
an EIS offers means for a user to integrate with the organization, and make himself or
herself a part of the whole. Consequentially, EISs can have a fundamental social gluing
function to constitute the organization.

31



An efficient EIS makes work for human users faster and less prone to errors. It thus also
enlarges the circle of potential actors in the organization, since it allows to integrate actors
into complex processes, who do not have the ability to oversee their interaction with the
overall organizational interrelationships in its entirety.

Since EIS unfold their effectiveness only when specifically adapted to the organization
they are used in, EISs cannot be offered from stock, and be generically sold and deployed.
In order to acquire an EIS, the organization must take the decision to invest in the devel-
opment of a specifically tailored EIS, and continuously consider re-investments to adapt
the system to changes in the organization’s processes and structure.

Whether to use an EIS or not cannot be decided individually by the users of the system,
since the functionality of an EIS may cover multiple parts of an organization [FC08].
This means that the introduction of an EIS and the decision about developing an EIS, are
inherent managerial tasks and require appropriate authority and discretionary power to
decide about the investment.

Generic single-user software applications for performing working tasks, such as word pro-
cessors and spreadsheets [XSS+04], provide functionality not bound to any specifics of
organizational tasks and goals. A number of other software solutions are available as com-
mercial off-the-shelf (COTS) applications [PW09, RMB01], which can be used to support
collaborative tasks on the basis of generic functionality. Among these components are,
e. g., e-mail applications, shared folders to exchange files, group calendars, wikis, etc.
These tools provide generic functionality for editing merely unstructured documents in di-
verse usage contexts [LHM90]. This is the reason why office software applications can be
produced from stock, and be offered in high volumes by a few number of vendors. When
part of an overall EIS architecture as integrated applications for performing individual
working steps, these applications conceptually appear as subcomponents of the EIS.

EISs denote software systems, which are used to support organizational tasks, e. g., schedul-
ing of working steps for humans, managing information object access, invoking automatic
processing components, or providing access to generic software components for organiza-
tional tasks. EISs, as they are understood in the course of this work, unfold their added
value by encapsulating functionality that is specific to a particular organization. Their pur-
pose is to provide only a limited set of functionality, which specifically supports users to
perform tasks and processes in the organization they are part of.

1.4 Business–IT alignment with methodical support

One central research goal in information systems science is to achieve an alignment be-
tween conceptualized EMs and the EISs that are used to support their execution [GH09,
HV93, LPW+09]. It is a cardinal management task to synchronize ideas about how an or-
ganization should operate, with the real circumstances under which the organization runs.
With the use of IT systems as supporting units in organizations, this task also covers the
behavior of software, and it becomes a managerial task to make sure that software systems
in organizations operate in alignment with their business purpose [GH09]. From this con-

32



stellation, a dilemma arises in managing organizations. On the one hand, it is an inherent
managerial task to align the ideas and conceptualizations of strategic goals with the real
actions going on in an organization. On the other hand, once software gets involved, a
high degree of technical expertise is required to understand the operation of software, or
even to develop software according to intended managerial conceptualizations.

The approach described here contributes to solving this problem, by specifying a dedicated
software engineering method, which focuses on giving support for performing the trans-
formation from conceptual enterprise models to technical implementation artifacts. The
method combines existing conceptualizations and technological components, and gains an
added value in flexibility and efficiency by offering an integrated and automated engineer-
ing procedure. Its central innovation lies in pre-structuring the process of transforming
domain-specific enterprise descriptions to technical artifacts into multiple dedicated me-
thodical phases.

This is achieved by separating the task of interpreting conceptual knowledge in input en-
terprise models, from the tasks of taking architectural design decisions based on the inter-
preted concepts, and finally generating software artifacts according to the design decision.
These tasks are performed in subsequent methodical steps, and supported by automatic
model transformations. Human design decisions are incorporated where required, and hu-
man software engineers are guided through the development process by tooling support.
As interfacing concept between the two tasks of interpreting input models, and generat-
ing artifact output, the notion of “implementation strategies” is used, which get associated
with conceptual elements of the input enterprise models using a mapping model.

Implementation strategies represent formalized descriptions of technical design decisions
about how to control the code generation procedure. Which implementation strategies to
apply for which conceptual notion, can either be decided by software architects during a
development process, or automatic rules can be formulated beforehand, which allow an
automatic association of implementation strategies with enterprise model concepts. Af-
ter all required implementation strategies are specified and referenced from the mapping
model, code generation templates will transform the chosen implementation strategies to
software artifacts.

The implementation strategy pattern provides an abstraction over technological artifacts,
while not being concerned with the actual implementation of these artifacts. This way,
it provides an adequate abstraction to serve the purpose of a linking concept between
interpreted domain-specific concepts in enterprise models on the one hand, and design-
decisions for their technical realizations on the other hand. This allows the SEEM method
to explicate an ontological turn from organizational descriptions to technical system speci-
fications via dedicated modeling concepts, instead of hard-coding the decisions about how
domain-concepts are interpreted and mapped, in a monolithic model transformation.

The combined use of a mapping model, implementation strategies, and the correspond-
ing model transformations, provide dedicated methodical abstractions for coping with the
method’s requirements to bridge abstraction gaps between conceptual enterprise model
specifications, and EIS implementations (see Sect. 4). Creating such a method is a genuine
task of method engineering [BLW96, JJM09]. To have such a method at hand promises

33



a benefit both in cost-efficient development of reliable EISs, as well as supporting the
alignment between business requirements and information technology.

1.5 Domain-specific software engineering approaches

Domain-specific software engineering (DSSE) is a methodical approach to develop soft-
ware on a higher level of abstraction, than with traditional development techniques, e. g.,
than with object-oriented modeling [KT08]. Older development methods make use of
modeling as a way of abstracting from textual constructs in programming languages,
which, e. g., is a done by the Model-Driven Architecture (MDA) [Obj03] approach com-
bined with UML [BJR99], to visually express technical constructs of a software system.
DSSE accounts for creating domain-specific modeling languages (DSMLs) as part of the
overall software engineering procedure [Fra10], and then using these languages to create
models which can be consulted for software artifact generation later on. By applying a
DSML, models consulted for software engineering can reach a significantly higher degree
of semantic richness, because the underlying language constructs of the modeling lan-
guage do not refer to technical constructs of a target system only, but allow to describe the
solution to a specific problem in adequate terms that structure the solution space.

Different characteristics of design approaches towards DSMLs can be classified into mul-
tiple categories, based on “domain expert’s or developer’s concepts”, as well as on the
“generation output”, on “the look and feel of the system” to build, and on the “variability
space” of the solution domain [LKT04]. A DSML may carry one or more of these char-
acteristics, which allows to classify concrete DSMLs into distinct categories, depending
on whether the characteristics are met or not. EMLs can be understood as DSML falling
into the category of languages, which are exclusively designed based on domain expert’s
or developer’s conceptualizations.

A comprehensive DSSE method comes with two major methodical components, which are
a domain application programming interface (API), and code generation transformations.
Code generation transformations bind together the abstract concepts in the DSMLs with
the functionality provided by the domain API, by creating artifacts from domain-specific
models, e. g. program code, which can be deployed on top of the domain API to form a
complete software system. Code generation transformations provide the “glue” between
domain-specific models and their technical implementation, they perform a formal inter-
pretation of the meaning of the domain-specific model’s semantics, to translate them into
constructs of the technical software domain forming a running system.

These general methodical notions known from DSSE approaches can also be applied to
EMLs, because EMLs are a specific kind of DSMLs. To provide a fruitful development
method, however, concrete methodical decisions have to be taken in advance, in order to
make the conceptual knowledge represented in EMLs efficiently applicable in a special-
ized DSSE procedure for enterprise model-driven software engineering (EMDSE).

34



1.6 Deriving requirements towards enterprise information systems from enterprise
models

EMs are stated in terms of describing an organization from a high-level perspective, and
the organization is presented as the primary subject matter. The terminology used in EMs
covers concepts of actions, responsibilities, resources, goals, etc., which are all abstract
enough to carry meaning independent from any concrete organizational or technological
mode of realization. Both the organizational realization, as well as any possible technical
implementation of the concepts, need to be operationalized by interpretation procedures,
to derive applicable knowledge from the conceptual models.

When software development is put into focus, it becomes possible to derive a number
of facts from EMs, which provide a solid fundament to methodically guide a software
development process for these applications.

Among the requirements towards EISs that can be derived from EMs are

• the actions required to be performed in available business processes, i. e., the func-
tions offered by the application

• the set of data resources and electronic documents the application will deal with by
its functions

• relationships to other software components to be interfaced to

• user authorization information, derived from conceptually modeled roles and re-
sponsibilities

• task scheduling and physical resource allocation constraints

• user communication relationships and available information channels

Possibly, also meta-information about the software can be derived, such as strategic mile-
stones for the software development process, or long term version management plans
based on priorizations from strategic enterprise modeling perspectives.

To gain this knowledge from EMs, a procedure is required which allows for changing the
focus on the primary subject matter in enterprise models from the organization as primary
object of interest to the software as described object. Such a procedure resembles an
ontological turn in the way the knowledge is looked at, from an outer perspective on the
organic action system of an enterprise, to a formal perspective on internal software system
components. A procedure of this kind is suggested in this work. The ontological turn will
be accomplished by a multi-phase model transformation, and a methodically guided way
to enrich the knowledge derived from EMs, with technical detail knowledge expressed
using dedicated modeling constructs. The method can be configured along a continuum
between a fully automatized procedure, using elaborate automatic transformations, or a
methodically guided manual development process, combining manual develoment steps
and software-supported automatized steps.

35



1.7 Structure of this work

The work at hand is structured into five main parts. Part I gives an overview on the role
of EISs in organizations and introduces underlying questions of aligning business goals
with technology in Sect. 1. A typical use case of the method is presented as an illustrative
example in Sect. 2.

Part II lays out the fundamentals of the presented research work, starting in Sect. 3 with
introducing underlying terminology and related scientific work. Essential requirements
towards the method and its outcome are elaborated in Sect. 4, and an introduction into
the methodological components, which are consulted to form the engineering method, is
given in Sect. 5.

Part III elaborates the entire engineering method for model-driven development of enter-
prise information systems from enterprise models. The fundamental conceptual building
blocks, which make up the methodical elements of the method, are presented in detail in
Sect. 6. Dynamic aspects of the method are covered in Sect. 7, where methodical proce-
dures of how to apply the method are illustrated.

In Part IV, prototypical example implementations are shown as an additional way of de-
scribing and clarifying the method. Sect. 8 contains general considerations about the archi-
tecture and implementation of enterprise information systems, and develops a domain API
to formalize the design decisions taken for the creation of EIS. Concrete implementation
strategies for conceptual enterprise model elements are suggested in Sect. 9. A compre-
hensive example of developing a supply-chain monitoring application in a service oriented
architecture (SOA) environment is shown in Sect. 10, and more detailed information about
the introductory example is made available in Sect. 11. The procedure for generating ex-
ecutable software system artifacts, and the tooling support that has prototypically been
implemented to demonstrate the use of the method, are shown in Sect. 12.

Part V summarizes and evaluates the presented approach in Sect. 13, and Sect. 14 provides
indications of further research work left for future considerations.

36



2 An overview example: Online web-shop

As an example, consider the business process model shown in Fig. 2, which has been
created using the MEMO Control Flow [Fra11b] language. It represents a typical online
order process, in which an internet user Customer places an order via a web page, and an
employee of the Shipping Department of an organization is responsible for carrying
out this order, and sending the requested goods to the customer.

The model shows that an order process is initiated, when a customer enters the web shop.
As a first step, the customer browses through the product catalog and selects products to
order. This step is modeled as a semi-automatic process-step indicated by the symbol of a
human operating a computer, which means that it is performed as an interaction between
a human user and a software system. By explicitly referencing the Web Browser re-
source, the model states by convention that this process-step is to be performed using a
web-application front-end.

The business process model shows the order process only with relevant details from a
business perspective. For example, it explicates alternatives in the flow of control and thus
indicates, at which points decisions are to be taken. The model also explicitly names the
information resources Product List and Order, as well as an existing information
system which is described by its name Storage Management IS as to be used for
managing the physical goods storage. Roles of responsible actors are referenced by each
process-step with human interaction.

The roles and resources referenced from the business process model have been specified
in separate organization and resource models. The organization model is shown in Fig. 3.
The resource model simply lists the available resource types, without specifying further
details. The allocations of resources, meaning the specifications of which resources are
involved in which process-steps, are depicted in Fig. 4.

The technical architecture of the example application to be generated is shown in Fig. 5. It
represents a Java Server Pages (JSP) [Ber03] application environment, with a central set of
HTTP-accessible services realizing required coordination functionality, and client appli-
cations accessing the central set of services via a remote network connection. The central
coordination service provides functionality to persist the states of running processes in
one central place. This includes information about process-steps waiting to be performed,
assigned actors responsible for performing process-steps, process instance variables, or
synchronization points in process instances waiting to be reached. The example service
API (see Appendix 6.5) provides this functionality as a set of JAVA classes. Alterna-
tive architectural conceptualizations might choose to put more responsibility into a central
coordination node. This may include process coordination by using a central workflow
processing engine, e. g., a Business Process Execution Language (BPEL) interpreter (see
Sect. 10). The example implementation at hand realizes process coordination in a decen-
tral way, by letting each actor’s clients individually decide about further processing steps,
assigning them to different actors where necessary.

To fully understand the meaning of the business process model (BPM) shown in Fig. 2,
a number of assumptions are required to be known, which are not detailed out in the

37



C
an

ce
l O

rd
e

r

W
e

b
sh

o
p

 e
n

te
re

d
Se

le
ct

 p
ro

d
u

ct
s

fr
o

m
 c

at
al

o
g

<
 C

u
st

o
m

e
r 

>

O
rd

e
r 

ca
n

ce
le

d

Fi
ll-

in
 o

rd
e

r 
fo

rm
o

r 
ca

n
ce

l

<
 C

u
st

o
m

e
r 

>

O
rd

e
r 

is
 v

al
id

P
ic

k 
g

o
o

d
s 

fr
o

m
 s

to
ra

g
e

<
 S

h
ip

p
in

g
E

m
p

lo
ye

e
 >

G
o

o
d

s 
ar

e
 p

ic
ke

d
P

ac
ka

g
e

 g
o

o
d

s 
an

d
 s

e
n

d

<
 S

h
ip

p
in

g
E

m
p

lo
ye

e
 >

O
rd

e
r 

co
m

p
le

te

P
ro

d
u

ct
 L

is
t

O
rd

e
r

W
e

b
 B

ro
w

se
r

O
rd

e
r 

is
 in

va
lid

Se
n

d
 c

an
ce

lla
ti

o
n

 e
-m

ai
l

St
o

ra
g

e
 M

an
ag

e
m

e
n

t 
IS

C
o

n
fi

rm
at

io
n

is
 r

e
ad

G
o

o
d

s 
ar

e
 p

ac
ka

g
e

d
an

d
 s

e
n

t

Se
n

d
 c

o
n

fi
rm

at
io

n
 e

-m
ai

l

C
o

n
fi

rm
at

io
n

 T
e

xt
C

an
ce

la
ti

o
n

 T
e

xt

Su
b

m
it

 O
rd

e
r

P
ro

d
u

ct
s 

ar
e

 s
e

le
ct

e
d

O
rd

e
r 

is
 s

u
b

m
it

te
d

R
e

ad
 c

o
n

fi
rm

at
io

n

<
 C

u
st

o
m

e
r 

>

V
al

id
at

e
 o

rd
e

r

<
 S

h
ip

p
in

g
E

m
p

lo
ye

e
 >

Fi
gu

re
2:

B
us

in
es

s
pr

oc
es

s
m

od
el

of
an

on
lin

e
or

de
rp

ro
ce

ss

38



Customer

Management

ProductionDepartment MarketingDepartment ShippingDepartment

ProductionEmployee MarketingEmployee ShippingEmployee

Figure 3: Organization model according to the example process

model. It is inherent to human understanding that perceived information gets enframed
by the backgrounds and experiences of the recipient [Hum48]. As a consequence, on the
conceptual business process level, it is very natural to leave out detail information, in order
to make the model better understandable and efficiently perceivable.

However, to explicate all necessary knowledge needed to gain an automatically executable
description of the process depicted in Fig. 2, some assumptions have to be made, to gain
more precise semantics from the conceptual models. Some of these assumptions are:

• There is one single information resource Product Catalog which exists prior to start-
ing the process. The name of the process-step “Browse product catalog and select
products” indicates that this information resource is accessed in a read-only way.
Domain-specific knowledge makes clear to a human user of the model that a catalog
is typically subdivided into multiple entries. Making these entries readable via a
graphical user interface (GUI) is the central task of this process-step.

• Order, although modeled with the same modeling construct as Product Catalog, does
not represent a single information resource instance, but a type of information re-
source of which multiple instances can exist. This is clear to a human recipient with
basic domain-specific knowledge, knowing that a commercial enterprise would typ-
ically deal with multiple orders over time. The name of the process-step “Place
order or cancel” makes clear to a human recipient that a new instance of one order
information object is to be created in this step.

• When semi-automatic process-steps, i. e. process-steps in which human users in-
teract with software, reference to information objects, it can be assumed that the
user will be presented a kind of electronic document as an interface to the desired
information. The document may be editable or read-only, depending on the purpose
of the process-step.

• Involving a Web Browser in a semi-automatic process-step can intuitively be in-
terpreted in a way that a web-based front-end application is used to perform this
process-step.

39



Browse product catalog
and select products

< Customer >

Product List Web Browser

read

(a)

Place order
or cancel

< Customer >

Order Web Browser

create

(b)

Read confirmation

< Customer >

Web BrowserOrder

read

(c)

Validate order

< ShippingEmployee >

Order Storage Management IS

read

(d)

Figure 4: Allocation models according to the business process-steps and resources

• The role Customer, in combination with a web-based front-end application, gives
the idea that the product catalog is publicly accessible via the internet. Otherwise,
an explicit login step could have been modeled. The order process is thus publicly
accessible for customers.

• The role ShippingEmployee will be filled by one concrete employee of the shipping
department of the modeled company. One particular employee will be determined
and will be responsible for processing the order in all subsequent steps of the same
process instance. Since the role ShippingEmployee is used multiple times, it is rea-
sonable to assume that during execution of the same process instance it will be the
same employee who performs subsequent process-steps.

• The decision whether to submit an order or to cancel the order process is under-
stood as a decision taken by the actor performing in the semi-automatic process-step
“Place order or cancel”.

• The decision whether a submitted order is valid or invalid, as a result of the semi-
automatic process-step “Validate order”, is also assumed to be taken by a human
performing this process-step. The software component used in this process-step can
thus be expected to offer user interface components to input the decision.

40



HTTP-
Server

Mobile Pad 
Client

Desktop Client

Desktop Client

Mobile Pad 
Client

network 
environment

Process 
Coordination 

Service

Software Engineering 
with Enterprise Models

Implementation

Configuration

Implementation

Implementation

Figure 5: Architecture of a Java Server Pages (JSP) based application as generation target
for the example

It is natural to human cognition that details are left out when communicating and sym-
bolizing knowledge. As a consequence, there are still a large number of ambiguities and
missing details in the model. Although providing suitable means for communication and
gaining a common understanding about business processes among human stakeholders,
the business process model intentionally does not give hints on all detail information that
would be required to provide software support for the actors involved in the process. Be-
cause of this, a development method now is applied, which formalizes the interpretation
of the conceptual model based on the above assumptions, to bridge from the conceptual
business process level description to an executable implementation.

Applying the method The SEEM method presented in this work allows to augment
the business process model with the required detail information for implementation, in
a structured an repeatable manner. The method keeps the layers of abstraction separate,
which either describe the conceptual business perspective with an intentionally blurred
semantics, or describe implementation concepts that technically realize a software system.
Intermediating concepts are provided by the method, which serve to explicate connections
between both layers.

The first step to apply the method, is to convert the enterprise models to a compact repre-
sentation which contains all extracted enterprise model concepts in a single non-graphical
model. This step serves to get an internal representation of the enterprise models for eas-

41



ier further processing of the method. To perform this step, a horizontal model-to-model
transformation is run, which converts the enterprise models to the internal representation.

The software architect gets informed by an automatic validity check, if the original enter-
prise models do not contain sufficient information to unambiguously create the extracted
representation. In this case, the original enterprise models are revisited, and the transfor-
mation is run again, until the validity check succeeds.

After this step, the software architect selects implementation strategy modeling languages,
which reflect possible implementation options on the desired target platforms. Subse-
quently, an initializing model-to-model transformation is run to create both an initial
mapping model, and initial implementation strategy models. The according model-trans-
formations, and the respective implementation strategy meta-models, have been developed
earlier, as part of the adaptation of the method to the desired target architecture.

The generated mapping model is a non-graphical model structure as shown in Fig. 6, which
binds concepts from the original enterprise models to modeled implementation strategies
in a formal notation. When the transformation is run, the mapping model is initialized with
a list of mapping entries, each one binding a concept from the extracted enterprise model
to one or more implementation strategies listed in the implementation strategy model, or
in multiple implementation strategy models, if artifacts for more than one platform are
generated simultaneously.

The transformation also analyzes the enterprise models’ semantics, to initialize the im-
plementation strategy model with automatically suggested implementation strategies, and
associate them to enterprise model concepts in the corresponding mapping model entries.
Depending on the degree of automation, which is reflected by the effort put into devel-
oping platform-specific implementation strategy model initialization transformations, a
100% code generation approach can be strived for, which means to automatically create
a fully populated mapping model containing all implementation strategy references re-
quired to successfully run the code generation step. Alternatively, if the effort for creating
such elaborate transformation exceeds the one for manually making architectural decisions
about how to represent enterprise model concepts via implementation artifacts, the map-
ping model transformation can be restricted to create a model with yet to be completed
mapping model entries, in which references to associated implementation strategies are
manually created by software architects and developers.

Remaining manual development tasks after initializing the mapping model, and its ac-
companied implementation strategy models, cover the detail specification of data types for
information objects used throughout the business process, as well as creating GUI repre-
sentations of these information objects, typically realized via form-views on the modeled
data. The example uses XML Schema Definition (XSD) as data type specification mech-
anism for information objects, and XFORMS [Dub03] as technology to specify editable
forms and other views for Extensible Markup Language (XML) data. Besides these tech-
nical specifications, a collection of product data with related images in a database needs
to be created, and, in case of the chosen JSP web application target architecture, manual
development work is additionally remaining for creating the visual web-site layout.

42



Figure 6: Mapping model with links to elements from the conceptual model and the im-
plementation strategy model

After manually refining the initial mappings, the software architect runs validity checks
on the mapping model and the implementation strategy models. The steps of manual
refining and running validity checks are then iterated until the validity checks pass without
complaints.

Subsequently, all information for creating a running software system is available in the
combination of the extracted enterprise model (EEM) model, the mapping model, and the
implementation strategy model. From these configurations, an executable software system
is created by using a model-to-text code generation transformation, which takes these three
models as input, and generates executable artifacts. An excerpt of the example’s code
generation templates in a surrounding editor application is shown in Fig. 7. The example
code generation templates are written in the XPAND language (see Sect. 12).

Fig. 8 gives an impression of how the developed software presents itself via a graphical
user interface.

43



Figure 7: Code generation templates of the example project inside editor application

Figure 8: Graphical user interface of the developed software application

44



Part II

Approach
I come to you defences down

With the trust of a child
Peter Gabriel, “Red Rain” from the album “So”, 1986

3 Concepts and terminology

Several key concepts and related terminology are used throughout the upcoming docu-
ment. To introduce the underlying basics, and to form a list of prerequisite concepts for
the method, these fundamental conceptualizations are sketched for introduction in the fol-
lowing.

3.1 Modeling languages, meta-models and model instances

Models in information systems science can be understood as semi-formal constructs, which
allow to store and interchange knowledge, and serve as alternative means to human lan-
guage or other means of expression, to utter facts about some perceived or constructed
parts of reality. Models can generally be considered semi-formal, because they typically
consist both of a syntactically strictly defined formal structure (which, stripped down to
its mere syntax, could be called a data structure in computer science terms). Additionally,
informal semantics can be expressed by using natural language labels and identifiers, as
well as comments and annotations to model elements. If equipped with a graphical nota-
tion, applying visual patterns to model elements opens up a wide range of further means
for expressing informal semantics.

For the purposes of the proposed method, the informal aspects of semantics stored in
models will play a role when determining default values for formal elements in generated
models.

Modeling languages Syntax and formal semantics of models are specified via model-
ing languages. Every model is conforming to, or is “written in”, an underlying model-
ing language. Models may also combine elements from multiple modeling languages,
e. g., by referencing elements from other models, which are written in different modeling
languages. If modeling languages provide a graphical notation, the syntax can be dis-
tinguished between an abstract syntax, which determines the formal structure in which
model content is represented, and a concrete syntax, which consists of graphical notation
elements that visually represent model elements.

45



Meta-models Modeling languages are semantic entities constructed by humans, which
need their own means of expression to be specified. One way to specify a modeling lan-
guage, is the construction of a meta-model [CSW08, Kle08], which expresses the available
language elements, and the way they can be validly combined and interrelated throughout
the use of the language. When applying a method, which makes use of multiple mod-
els in different modeling languages, and of model transformations describing relation-
ships between these models, using meta-models to specify the involved modeling lan-
guages is an elegant way for specifying languages. When different meta-models are con-
structed using the same meta-modeling language [Fra08], they conform to an identifcal
meta-meta-model, which allows to apply specialized model transformation languages for
meta-models of that kind, and to reuse existing model tooling support.

Model instances In some contexts, the distinction between a model on the one hand, and
a meta-model describing its modeling language on the other hand, remains clear without
further need to mark the model as being an instance of its meta-model. However, some-
times the term model instance is used to explicitly denote the realized language artifact,
not the language itself or its declaration. Being an instance of another model, is always
relative to the use of the referenced other model as the language description of the in-
stance. Because of this relative relationship, any meta-model can also occur in the role
of a model instance, namely an instance of another meta-model (a meta-meta-model from
the original point of view), which was used to specify the meta-modeling language the
model conforms to. However, such confusion is not likely to occur in the course of the
upcoming method description, because the developed method makes use of one level of
model instances, and one cleanly separated meta-level.

To summarize the introduced terms, Fig. 9 visualizes the mentioned meta-meta-model,
meta-model and model instance levels.

3.2 Model transformations

Formal relationships between models, in terms of how one model is semantically inter-
preted to influence the creation of another model or technical artifact, are described by
model transformations. Model transformations take one or more models as input, and gen-
erate an output artifact, which is either another model, or a piece of technical artifact or
any textual output generated throughout the transformation. Transformations, which out-
put another model, are called model-to-model transformations, or m2m transformations.
Transformations to general artifacts are referred to as model-to-text transformations, or
m2t transformations.

The way how a model transformation operates, is declared via a model transformation
specification. There are different approaches how to describe model transformation spec-
ifications. From a developer’s point of view, model transformations are specified by pro-
grams in a specialized higher-order language, which allow to describe the desired trans-
formation operations, in terms of querying information from the source models, and sub-

46



Meta-meta-model

Meta-model

Model-instance

...

instance of instance of

instance ofinstance of

Ecore
Meta-Meta-

Model (Ecore
Meta-Modeling

Language)

Enterprise
Meta-Model 
(Enterprise
Modeling 
Language)

Implementation 
Strategy

Meta-Model

Implementation 
Strategy Model

Mapping
Model

Enterprise
Model

Figure 9: Meta-meta-model, meta-model, and model instance levels, with example model
types used in the presented method

sequently control the output process of an artifact, more efficiently than general purpose
programming languages can do. Several specific model transformation specification lan-
guages are available, e. g., QVC [Obj08], XTEND/XPAND [Eclc], or, in a wider sense con-
sidering Extensible Markup Language (XML) data structures as models, XSLT [Tid01]
for transforming between XML formats. Specifications written in these languages pro-
vide sufficient information for a model transformation engine, i. e., an interpreter for the
transformation specification, to execute the transformation. Every run of the transforma-
tion interpreter, with possibly different models as input, is called a model transformation
instance. I. e., a model transformation instance comes into existence, when a model trans-
formation specification is executed, and there can be any number of model transformation
instances for one model transformation specification.

The specification of a model transformation generally consists of two complementary
sides, which are typically declared using two different kinds of expression syntaxes in
model transformation languages. The first logical step in performing a transformation is
querying information from one or more source models, given as input to the transforma-
tion. For this purpose, multiple languages for describing model queries are available and
may appear integrated as partial language for the query side in a complete model trans-
formation language. To usefully operate on the queried data, the model transformation
language also needs an output side, and means to control the generated output. This is typ-
ically realized by a template language with basic conditional and algorithmic expression
features, which operates on the information queried from the source models, and outputs

47



generated artifacts accordingly. Examples of model transformation specifications written
in the XPAND language are provided in Appendices A.3.3 and A.4.3.

Since model transformations operate on input models and output models, which each may
be formulated in a different modeling language, the specification of a transformation natu-
rally has to be made with knowledge about the languages of all the involved models. This
is required, because the specification of a transformation determines, which elements to
query in the source models, and which elements to create in the target models or other
output artifacts. Thus, there is a reference from each model transformation specification
to the language descriptions (meta-models) of the models involved in the transformations.

It turns out that when referencing multiple modeling languages from one transformation
specification, it is useful to have the language specifications formulated in a common meta-
modeling language, according to a common meta-meta-model [Fra08]. Using the same
meta-modeling language for all language specifications of involved models in a transfor-
mation, makes type relationships between elements in different languages easier to handle,
and thus allows for easier binding between the query expressions in the model transforma-
tion language, and the subsequent output control expressions.

Model transformations, which output models or artifacts on the same semantic abstrac-
tion layer, as the source models are located on, are called horizontal transformations, while
transformations, which convert between different levels of abstractions, are named vertical
transformations. Horizontal model transformations represent the simpler class of transfor-
mations, because their task is mainly to re-structure the syntactic relationships between
elements from different source modeling languages and target output languages, and to
rename elements between different models. Vertical transformations typically transform
models from a higher level of conceptual abstraction, to models which contain more con-
crete details about technological realization. In these transformations, semantic interpre-
tation of the source models is performed, in order to grasp formalized facts expressed on a
higher level of abstraction, which contain knowledge about the output on the lower level.
To interpret content in an automatic transformation, hints based on analyzing identifier
names, conventionalized model element constellations, or values in comment fields, etc.,
can be applied.

In Fig. 10, the relationships between modeling languages, model instances, model trans-
formation specification languages, model transformation specifications and model trans-
formation instances are schematically depicted.

Model transformations can create fully valid output artifacts, which are ready to be further
processed, or to be deployed in a target environment. This class of transformations can
be called total transformations. In contrast to total transformations, partial transformations
create models as output, which are not immediately ready for further processing. Gen-
erated output from partial model transformations may still miss required values or refer-
ences. These artifacts, which are typically models resulting from a partial model-to-model
transformation (not artifacts from model-to-text transformations), require additional man-
ual editing or other methodical means to be completed, before they can further be used.

48



Language level

Specification level

Instance level

instance of instance of

Transformation

Transformation
Specification

instance of

realization of

query output

references references

w
ith expression

langua
ge to...

w
it h ex pr es si o

n
la

n gu a
ge  to .. .

Source
Meta-Models 

(Modeling 
Languages)

Source
Models

Target
Meta-Model
(Modeling
Language)

Target
Model or
Artifact

Transformation
Specification

Language

Figure 10: Relationships between modeling languages, model instances, model transfor-
mation specification languages, model transformation specifications and model transfor-
mations

A generic model-transformation-pattern Model transformations play an important role
as methodical components in any model-driven development approach [KT08, Obj03].
They provide links between model instances that are used throughout a development pro-
cess. At the same time, they contain formalized knowledge about the syntactic and seman-
tic relationships between the modeling languages, in which the involved model instances
are expressed. In order to describe the actions to be carried out by a model transformation,
the transformation description must refer to language elements of both the input models,
and output models, of the transformation. Transformation descriptions can be any pro-
grams that read in models, and output other models after some kind of processing. While
such programs could in principle be written in any programming language, specialized lan-
guages are available, which provide dedicated programming constructs to perform model
transformations, e. g., the XPAND language [Eclc], or QVT [Obj08].

The description of a model transformation provides formal operative semantics, which de-
scribes how two or more models interrelate. However, current model-driven software en-
gineering (MDSE) approaches typically regard a model transformation as one monolithic
mechanism, which performs the desired input-to-output mappings in one step [ZSZ11].
This point of view on model transformations reminds of the early days of software devel-
opment, in which any architectural structuring of the internals of a software product was
left over to the intuition of programmers, without providing architectural reflection about
the relationships between the individual parts of the whole. It is thus one scientific goal, to
reason about the internal structure of model transformations, and to identify architectural

49



invariants that are common to all model transformations used for MDSE. Once common
architectural features have been identified, they can be consulted to explicate a develop-
ment method for creating model transformations, as part of an overall MDSE approach.

Having such a procedure at hand, methodical underpinnings for the challenge to get from
conceptual descriptions (requirements) to executable systems are made available. By not
merely treating model transformations as black boxes, which are functioning “somehow”,
but by taking care of their internal structure, the process of applying an MDSE method
can be raised on a more elaborate methodical level. The Software Engineering with En-
terprise Models (SEEM) approach developed in this work makes use of the identification
of internal model transformation structures, by splitting the overall transformation process
into multiple dedicated phases, which are easier to develop and to maintain individually,
compared to a single monolithic transformation approach. These phases conform to the
notion of a general model-transformation-pattern as shown in Fig. 11.

Analyze Decide Generate

Read input 
models

Write output 
models or 
other artifacts

Pick imple-
mentation 

components

Query model 
content into 
variables 

Fill template 
skeletons 

with values
Derive 
default 

configuration

Traverse 
model 

structure

Translate
to technical 
representa-

tionRecast 
structural 
properties

Figure 11: Model-transformation-pattern

The underlying idea of the general model-transformation-pattern is that any transforma-
tion procedure used in MDSE consists of applying the pattern of a) first analyzing the
contents of the input models, b) then, based on this analysis, deciding how the structure
of the resulting implementation artifacts is to be organized, and, c) finally outputting im-
plementation artifacts based on structural decisions taken in b). The SEEM method makes
use of three transformation phases, which are the adapter transformation (see Sect. 6.3.1),
the mapping model initialization transformation (see Sect. 6.3.2), and the code generation
transformation (see Sect. 6.3.3), to methodically reflect this general pattern, and to of-
fer individually maintainable parts of the entire transformation description, instead of one
monolithic transformation.

50



3.3 Validity checks

To determine, whether a model is complete or correct in a specified sense, validity checks
can be applied. Validity checks, as understood in this work, perform tests on model in-
stances for required values and available references. They may also perform semantic
checks, i. e., query the content of a model and apply comparisons and other checks, to
make sure that values supplied with a model are coherent for further processing. The
terms “model checking” or “model validation” are sometimes synonymously used with
“validity checking”. To avoid misunderstandings concerning divergent uses of these terms
in other disciplinary contexts, the work at hand exclusively speaks of validity checks.

Especially at points in the method, where incomplete models as results of partial model
transformations have to be edited manually, validity checks are helpful to determine at
which points a model still is considered incomplete. Based on this automatically derivable
knowledge, methodical support can be provided, to efficiently guide software developers
through a list of model elements which require further manual editing.

In the same way, as a model transformation instance resembles the execution of a model
transformation specification performed by an interpreter engine, a validity check instance
is the result of a validator’s run, interpreting a validity check specification. A validity check
specification contains of a list of boolean expressions, each one incorporating queries on
the model, and describing formal rules that characterize a model’s completeness or se-
mantic validity. If any of the boolean expressions listed in the validity check specification
results to false, the entire check has failed, and the model can be considered invalid or
incomplete. Appendices A.3.1 and A.3.2 contain an example validity check specifications.

Boolean expressions that make up validity check specifications, are typically formulated
in a model query language, which reads values from the validated models, and tests them
against desired conditions. When applying model transformations and validity checks, it
is recommended to use a validity check specification language, which makes use of the
same query expression language as the model transformation language used in the same
development project. Using the same query expression language makes it possible to share
utility functions among model transformation specifications and validity check specifica-
tions. This way, complex queries can be reused both for validating models, as well as for
querying model content to control a subsequent transformation process.

The validity check specification language used in the example projects in this work are
written in the CHECK language. This language is part of the XPAND / XTEND language
family contained in the Eclipse Modeling Framework (EMF), and uses expressions in the
XTEND language to formulate boolean validity conditions for models. Shared queries can
be modularized in extension files, which can be included both by validity check specifi-
cations in the CHECK language, as well as by model transformation specifications in the
XTEND and XPAND languages.

51



3.4 Business process models and workflow models

There is a traditional distinction between models, which represent structural features of a
system, and others, which incorporate knowledge about the dynamics of ongoing actions.
Both aspects can be expressed with several different modeling languages. Static structure
models for general purposes may be given as, e. g., entity-relationship models [Tha00],
UML class diagrams [BJR99], or domain-specific system design languages, which focus
on structure, e. g., the SAP Standardized Technical Architecture Modeling (SAP-TAM,
[SAP07]) language.

Another ontological perspective is taken in by looking at the dynamics of a modeled sys-
tem. Models, which capture information about actions and events in a system, belong
to the class of process models. Such models typically express sequences of process-steps
taken throughout a process, usually along alternative decision paths and parallel sequences.
Process models may optionally also include the notion of events, which mark points with
specific properties in the process sequences, e. g., a change in state of an entity, or a point
at which specific knowledge about the process becomes available, e. g., “all following
process-steps will be automatic”.

There is an inherent link from process models to structure models, since any description of
what happens, has to refer to entities, which either actively take part in the process, or are
passively involved, e. g., by being manipulated or consumed in the process. This means
that any process model necessarily has to reference structural elements. This is not the
case vice-versa, since structure models indeed can be formulated without any explicit ref-
erence to process elements. However, structure models require at least implicit knowledge
about processes that operate on the modeled structure, or a mechanism that works on it.
Otherwise there would be no value in formulating structure models, they would be useless
without anything to imagine that can happen according to the modeled structure.

The sequential relationship between individual process-steps, and optionally events, is
typically expressed by a control flow relationship, which is often visualized in graphical
process modeling languages as arrows or lines connecting individual process-step ele-
ments. Fig. 2 shows an example business process model, another example is given in
Fig. 12 a). Both models are created with the business process modeling language inte-
grated in the Multi-Perspective Enterprise Modeling (MEMO) enterprise modeling lan-
guage family [Fra11c, Fra12].

Several traditional techniques to formulate general purpose process models are available,
e. g., multiple variants of flow charts or structograms [NS73] or Petri nets [Dia10]. While
these approaches focus on a conceptual description of processes, without a closer rela-
tionship to further applications of the process models, languages like the activity diagram
language of the Unified Modeling Language (UML) [BJR99] provide a process modeling
approach, which is prepared for linking process description constructs to object oriented
structural software concepts.

A fine-grained distinction sometimes is required for differing between the notion of pro-
cess types and process instances. Process models typically represent process types, i. e.,
they describe possible actions and events, which are to be realized by acting entities dur-

52



ing process instantiation. To form a process instance, a process model has to be executed.
While the process executes, realized indicators such as processing time, decisions taken to
control the process flow, resources consumed, etc., can be documented in a log. This log
can later serve to represent the process instance for ex-post reference. An actual process
instance only exists during the time of its execution, due to the temporal nature of the
issues expressed by process models.

The relationship between process type declarations and individual process instances is
symbolized in Fig. 13. The figure shows how visual representations of process types can be
enriched by information from process logs, to form an ex-post representation of individual
process instances.

Business process models (BPMs) [Wes07] are process models with domain-specific se-
mantics for expressing conceptual knowledge about processes in organizations. Appli-
cations of BPMs cover the description of work processes incorporating manual actions
and human-made decisions, the interaction among humans, as well as the interaction with
software systems or other machinery, and automatic steps. BPMs are used to express a
high-level view on modeled process types without details on how individual process-steps
are carried out. To provide this overview, and to link to other description perspectives,
BPMs can contain references to entities such as persons, machinery or supplementary re-
sources, which play a part in the modeled business process.

A high-level perspective is also taken in by workflow models (WfMs) [vdAvH04]. How-
ever, in contrast to BPMs, the aim of using workflow models is to provide a technical view
on the automatically executable parts of business processes. As a consequence, a work-
flow model does not specifically relate to human actors or physical resources as BPMs do,
these elements are missing compared to BPMs. Instead, WfMs are enriched with technical
detail information about the invocation of software services.They are executable software
artifacts on a high level of functional aggregation, used to orchestrate other software com-
ponents which provide individual pieces of business functionality.

Fig. 12 a) shows an of a example conceptual business process model, as it can be used as
input for the SEEM method, contrasted by Fig. 12 b), which contains a representation of a
machine executable process derived from the conceptual model by means of the method.
A larger number of elements in the executable model indicates that this model describes
the process on a finer level of granularity and with different elements than the conceptual
model. In the example, first an order message is sent from a retailer to a good’s producer.
After the order is confirmed, and the ordered good has been produced or released from
stock, a transport instruction is sent to the logistician, who is responsible for transporting
the goods. The generated Business Process Execution Language (BPEL) process is com-
posed of a sequence of pairwise related receive and send operations, with optional plausi-
bility security checks performed by a central coordination and execution platform, which
runs the BPEL process. The exchange of documents is realized by transmitting XML-
encoded EDIFACT [Ber94] messages via Simple Object Access Protocol (SOAP) calls
to web-service operations. Several existing EDIFACT document types are consulted for
implementing the electronic document communication, as it is modeled in the conceptual
business process model. The ORDER type represents order documents, while ORDRSP
is used for order confirmation. IFTMIN stands for “instruction for transport”, which is a

53



message type with semantics for configuring a transportation contract. RECADV finally
realizes a document type for sending delivery confirmations.

As means of control, the coordination and execution platform monitors the electronic
document exchange and performs validity checks on the exchanged information. In the
example, this is done with regard to the IFTMIN message, which undergoes plausibility
checks performed by the IFTMIN_AssetCheck service. Since ice cream is transported in
the example case, this service may ensure that the transport instructions include the de-
mand for keeping the temperature of the transported goods constantly below -4°C. In the
generated BPEL process, the result of the IFTMIN_AssetCheck service is then processed
by the subsequent if-block, and in case of an invalid transport instruction configuration, a
corresponding mitigation process gets invoked. The remaining parts of the process imple-
mentation, which are not displayed in Fig. 12 b), handle the transport configuration and
the exchange of the final RECADV confirmation document.

3.5 Resources and information objects

The range of conceptual language elements for expressing resources involved in process
descriptions is typically narrow. Common business process languages offer generic re-
source concepts without further differentiation, e. g., the Business Process Modeling No-
tation (BPMN) only knows a plain general “Resource” concept. Some research activities
aim at elaborating more differentiated resource description languages for specific domains
[FHK+09]. These approaches, however, have not yet influenced widely used enterprise
modeling techniques. Workflow-oriented modeling languages generally represent any re-
source by the technical concept of a variable carrying data.

The plain conceptualizations of the notion of resources on both the conceptual level, and
the implementation level, may result from the fact that the notion of a resource is too
general to be further differentiated by means of a general purpose modeling language on
either level of abstraction. In fact, a resource can be virtually anything, the term “resource”
belongs to the most overloaded terms in information systems science.

For the method proposed in this work, which serves to bridge between a conceptual process
perspective, and an implementation view on processes, it makes sense to further differen-
tiate between different notions of a resource. Resources in conceptual business process
models may either be passive physical resources, which are goods, material, or physical
documents, or active physical resources, such as information technology (IT)-equipment
or machinery. In addition, conceptual BPMs can include resources with the notion of im-
material information resources, such as master data about products and related business
partners, operative status information about a running processes, etc. [WMB+03] To in-
terpret the meaning of resources in a conceptual BPM, it makes sense to distinguish any
use of a general resource type by these fundamental categorizations.

In implementation-level models, such as workflow descriptions, a slightly different view
on resources is taken in. By its very nature of describing a software system’s operating
steps, a workflow model does not need to reflect the notion of physical resources directly.

54



Supply chain started Place order

< Retailer >

Order created Order acknowledgedAcknowledge order

< Producer >

Produce good

< Producer >

Good available

Create transport bill

< Producer >

Transport bill created Verify transport bill

< Platform >
Transport bill ok

Transport bill faulty Perform mitigation

< Platform >

Mitigation Þnished

Good reached destination Send receive advice

< Retailer >

Supply chain endedTransport good

< Transporter >

(a) Example of a conceptual business process model

(b) Example excerpt of an executable workflow model

Figure 12: Conceptual business process model versus implementation-oriented executable
workflow model

55



Process type

Process instances

Not 
available

Check if 
available

Available in 
stock

Order 
received

Production 
process

Retrieve from 
warehouse

Product is 
ready

Deliver 
product

Done

Check if 
available

Available in 
stock

Order 
received

Retrieve from 
warehouse

Product is 
ready

Deliver 
product

Done

Time:
2011-08-28 18:07
Resource:
Order-No. 75832

Start: 
2011-08-28 18:13
Performed by:
Mr. Miller
End:
2011-08-28 18:17

Time:
2011-08-28 18:17

Start: 
2011-08-28 20:13
Performed by:
Ms. Smith
End:
2011-08-28 20:19

Time:
2011-08-28 20:19

Start: 
2011-08-29 8:33
Performed by:
External Partner
End:
2011-08-30 10:52

Time:
2011-08-30 10:52

Not 
available

Check if 
available

Order 
received

Production 
process

Product is 
ready

Deliver 
product

Done

Time:
2011-09-03 9:24
Resource:
Order-No. 77478

Start: 
2011-09-03 10:21
Performed by:
Mr. Snider
End:
2011-09-03 11:04

Time:
2011-09-03 11:04

Start: 
2011-09-03 14:42
Performed by:
Mr. Collins
End:
2011-08-05 10:08

Time:
2011-09-05 10:08

Start: 
2011-09-05 15:18
Performed by:
External Partner
End:
2011-09-06 17:31

Time:
2011-09-06 17:31

Not 
available

Check if 
available

Order 
received

Production 
process

Product is 
ready

Deliver 
product

Done

Time:
2011-09-03 9:24
Resource:
Order-No. 77478

Start: 
2011-09-03 10:21
Performed by:
Mr. Snider
End:
2011-09-03 11:04

Time:
2011-09-03 11:04

Start: 
2011-09-03 14:42
Performed by:
Mr. Collins
End:
2011-08-05 10:08

Time:
2011-09-05 10:08

Start: 
2011-09-05 15:18
Performed by:
External Partner
End:
2011-09-06 17:31

Time:
2011-09-06 17:31

Instance 1

Instance 3

Instance 2

Figure 13: Relationship between process type declaration and process instances, with in-
formation from process logs for an ex-post representation of process instances

56



In software systems, any physical resource is indirectly represented by an information ob-
ject, which describes the physical resource. A physical resource’s description may consist
of details about its location, size, weight, or other material properties. There is no way to
directly cope with physical objects via software, which is why every reference to physi-
cal resources is indirectly wrapped into information objects on the implementation level.
While with respect to this distinction, the notion of a physical resource becomes even
less distinctive on the implementation level, than in the conceptual view, some additional
generic structure can be applied to what an information resource is from an implementation
perspective. Since for resources on the implementation level it is known that they are to
be represented as information objects, generic features for describing information objects
can be assumed as being part of the notion of information objects on the implementation
level. Two of these features are a data type, which determines the information objects syn-
tactical structure and possibly formal semantics, and a storage mechanism which provides
means to represent the information persistently, if this is required by the process seman-
tics. This more fine-grained notion of what a resource is on the implementation level will
be exploited for formal specification in the course of the method elaboration.

3.6 Perceived type-instance blurring

Sometimes confusion appears about the distinction between the use of types and instances
in enterprise models. In case of the dynamic perspective taken in by process models, there
is a clean distinction between process types, which are declared by process models, and
process instances, which come into existence by performing the processes, and which can
ex-post be referenced and analyzed with the help of log data (see Sect. 3.4). Accordingly,
process-step elements, events, and control-flow sequences are modeled on the type level,
and are instantiated at process runtime. However, with regard to static model perspectives
of enterprise models, the distinction between conceptually expressed types and instances is
not always equally clear. Actor and resource concepts used in enterprise models sometimes
appear not to fit into the type-instance dichotomy scheme. For the purpose of describing
a software development method based on enterprise models, it thus needs to be examined,
which impact this perceived ambiguity has on the requirements towards the engineering
method.

The described constellation appears, e. g., when a model element representing an actor
group describes both a type of an organizational group, as well as a typical singleton in-
stance referring to a set of actors who form this group in a concrete organization. An
actor group “accounting department”, e. g., can be used in the context of referencing a
functionally determined organizational unit, namely those parts of an organization which
carry out accounting operations. In this sense, “accounting department” is a type of an
organizational subsection, and in concrete organizations, concrete instances of this type
of organizational department can exist. Such instances of the type “accounting depart-
ment” may then be called “accounting department” again, since the singleton instance in
a concrete organization needs no further distinguishing name to be uniquely identified.

57



On the conceptual enterprise modeling level, it is thus not necessary to rigidly distinguish
between the notion of the type of an entity and an instance. This resembles the underly-
ing natural language concepts of domain-specific enterprise modeling languages, because
understanding natural language also is not bound to the formal type-instance dichotomy,
which is a methodical tool of abstraction, not a natural property of entities. As a conse-
quence, modeling concepts which represent entities in enterprise models may sometimes
be used in either sense, without making explicit which level of abstraction, i. e., type-level
or instance-level, is intended. In static perspectives of conceptual enterprise modeling,
this distinction often is not necessary and can be blurred, since it is not required for under-
standing the organizational circumstances expressed by the model.

When referencing resources in business process models, again a conflict with the theoreti-
cal type-instance distinction appears to occur, e. g., when modeled resources are accessed
multiple times from different process-steps inside the same process. During these accesses,
a referenced resource may change its semantics from initially representing a resource type,
to representing concrete resources as they will occur to be handled when the business pro-
cess is carried out. This is the case when, e. g., a referenced resource model element
initially represents a type of good to be ordered in a supply-chain process. An “order”
process-step may validly reference this resource to represent the type of product ordered.
During the further course of the process, when the ordered good is dispatched and trans-
ported to the purchaser who initially issued the order, the same resource model element
that was used to represent a type of product when referenced from an “order” process-step,
may now be validly referenced from a “receive good” process-step as a placeholder for the
good instance that gets delivered to the issuer of the order as a result of the order process.

The above examples show that in enterprise models, a clear and formal distinction between
types and instances is not necessarily needed or even intended. By blurring the borders
between types and instances, and simply not applying the theoretical looking-glass of
distinguishing concepts in a type-instance dichotomy, enterprise models gain an increased
level of expressiveness and conceptual understandability for the purposes they are intended
for. It is important to note that drawing a distinction between concepts on a type level,
and concepts on an instance level, is only one possible theoretical perspective, which, in
formal system descriptions, has proven to be useful to specify the semantics for formal
concepts. However, there is nothing special in establishing semantics by using concepts
beyond this formal distinction. The described blurring of the type-instance dichotomy thus
is no deficiency of enterprise models, but a regular phenomenon in expressing conceptual
semantics.

A software engineering method that facilitates the creation of software from enterprise
models, consequentially has the task to translate the natural language semantics of enter-
prise models, in which types and instances may appear to be used interchangeably, to a
system description, which disambiguates this blurring where required. Providing method-
ical means to specify this additional formal semantics avoids the above described theo-
retical problems that appear to exist with enterprise model semantics. The pseudo prob-
lem of a missing type-instance distinction in enterprise models becomes avoided, when
a software development method provides means to explicitly disambiguiate the meaning

58



of these elements with respect to the formally required type-instance distinction on the
implementation level.

59



4 Requirements towards an enterprise model driven engineering ap-
proach for enterprise information systems

Valuable methodical support for enterprise information system (EIS) engineering has to
meet a set of requirements, which both stem from the features an EIS is intended to sup-
port, and from demands towards the engineering method with regard to how software ar-
chitects and developers are guided by the method in creating such a system. Both aspects
are mutually interwoven, because the methodical procedure of how software functionality
is created, also shapes the features of the resulting system.

EIS have been introduced as software systems, which are specifically tailored to support
collaborative tasks in organizations (see Sect. 1.3). By their very purpose, these systems
operate in a distributed environment, with multiple human and automatic actors interacting
in processes and sharing information objects. To guide users through distributed collab-
orative processes, an EIS must be able to reference formalized process descriptions, it is
thus inherently a “process-aware” information system [DvdAtH05]. EIS are central appli-
cations for users to access shared information resources in an organization, therefore they
are also inherently “information aware” in the sense that they differentiate between dif-
ferent types of information resources and provide or invoke different viewers and editors
for these information objects. Besides this, EISs interface to other applications, and are
able to perform automatic process-steps. For interfacing with human users, EIS typically
provide a graphical user interface (GUI).

Derived from the purposes an EIS is intended to serve, and from demands towards the
shape of a methodical development procedure, a set of requirements can be stated which
the implementation of an EIS is expected to fulfill. These requirements are now discussed
in detail.

Requirement 1: Provide effective and efficient methodical guidance

One key task in software development is to handle the complexity of an entire system,
by breaking it down into smaller manageable parts. To make an engineering method ef-
ficiently applicable and increase development productivity, this task should be explicitly
supported by the methodical procedure. The use of a domain-specific modeling language
is one approach in conquering complexity [Gro09a, KT08], because it allows to encapsu-
late complex semantics into abstract modeling concepts, which allows to divide modeled
solution-spaces into different levels of abstraction.

In addition, methodical guidance can be provided through checking of the formal seman-
tics of models used throughout the engineering process, especially by testing whether
models are already completely specified for proceeding with subsequent methodical steps.
If missing model elements can automatically be identified, or combinations of model ele-
ments can be detected as inconsistent, an automatic guiding mechanism can point software
architects and developers to the corresponding places in model editors, and automatically
generate a list of open to-do’s to be performed on incomplete models. This list can lead
architects and developers efficiently through a process of completing the models.

60



Any methodical procedure which guides in performing actions by providing conceptual
reflection on how to perform them, and potentially with which tools to perform them,
implicitly aims at an increase in effectiveness and efficiency. Effectiveness means that
the correct use of the method will lead to a software system that fulfills the requirements
specified. Projected onto the concrete task of providing a method for software engineering
based on enterprise models, an effective method must succeed in providing solutions for
formally interpreting the semantics of conceptual enterprise models, to translate them to
technical implementation terms. This covers, e. g., the interpretation of business process
models as workflow descriptions, the disambiguation of actor and resource specifications
for technical purposes, and means for explicating the results of these interpretation steps
in a way they become revisable and editable by human developers.

Aiming at efficiency denotes that the engineering process prospectively needs less devel-
opment efforts than a generic or unspecific approach, or any other already known solution.
This, of course, is a generic justification pattern for any purposefully performed engineer-
ing action, because it is unreasonable to perform an engineering process while a known
alternative would lead to identical results with less efforts. Less efforts in software engi-
neering can be understood as less time spent on developing, using less man power (which
is important, because qualified software engineers are rare to find), and producing results
which are less prone to errors, thus in turn cause lower maintenance cost.

Requirement 2: Support various enterprise modeling languages

The method to be developed should be configurable for using different enterprise modeling
language families, with their associated enterprise modeling languages. This requirement
stems from the research goal of constructing a generic methodical approach, independent
from specific enterprise modeling methods. By including a configuration mechanism,
which allows to plug-in any enterprise modeling languages (EMLs) and corresponding
tools, it is made theoretically clear that the method can be applied independently from
specifics in a concrete enterprise modeling approach.

Adaptability of arbitrary external enterprise models also supports the generic requirement
for efficiency, because the method will be applicable with less effort if involved domain ex-
perts can continue using their familiar enterprise modeling tools, without possibly having
to switch to another enterprise modeling approach.

Requirement 3: Support distributed and heterogeneous architectures

Actors interacting with an EIS, either human users or automatically acting machinery like
software systems, must be considered to be locally distributed and physically placed re-
mote to each other in an EIS environment. The engineering method should thus provide
means to cope with the development of distributed software systems. Spatial distribution
requires the overall EIS to operate concurrently with multiple front-ends which need to
interact and coordinate their behavior. The system architecture thus must consider a mech-
anism to provide the coordination of a distributed system, which is typically solved either
by introducing a central coordination component, or by consulting interaction protocols

61



between individual front-end applications which provide common coordination without
a central coordinating instance. Some processes in organizations include movement or
transportation over large distances. In order to support these processes, an EIS should
potentially be accessible through mobile front-end applications, too.

Technological components that are integrated through an EIS in a locally distributed envi-
ronment can consist of heterogeneous system architectures, which make the components
incompatible to each other. An EIS development approach must provide the flexibility to
consult mechanisms for integrating heterogeneous software components, e. g., by incorpo-
rating object request broker (ORB) functionality into the software system created, which
translates semantically integrated data between syntactically incompatible interfaces.

Besides dealing with semantic incompatibilities, the development method also has to take
heterogeneous platform architectures into account, on top of which the developed soft-
ware will run, e. g., different operating systems, hardware platforms, and programming
languages. Due to the distributed and heterogeneous nature of EIS, the need arises to
use a method which supports multiple of these target architectures at the same time. The
method should thus support the development of software for target platforms, which were
not yet specified by the time the method was conceptualized, and it should support the use
of multiple different target platforms simultaneously in one development project.

Requirement 4: Provide multi-user support

According to its distributed nature, an EIS must support multiple users, who operate in
either the same or different concurrently running processes supported by the system.

For the engineering method, this means that functional components for user authentication
and authorization must be made available. Since the system may also be used in parallel
by multiple user simultaneously, multi-tasking and re-entrant behavior also need to be
considered.

Requirement 5: Enable process awareness

In order to provide functionality for supporting organizational business processes, the engi-
neering method should make use of formalized knowledge about the processes supported
by an EIS. This includes knowledge about which actor roles are involved in processes,
which concrete users fulfill these roles, which resources are used, and at which points con-
trol flow is passed between different steps of actions from one user to a potentially other.
From a user’s point of view, an EIS front-end application should provide a comprehensive
overview on the available process types and current process instances the user is involved
in.

Knowledge about these organizational circumstances should be derived from enterprise
models, to have a formalized basis for specifying the requirements towards the system to
be developed.

62



Requirement 6: Enable information awareness

Since information access is a relevant kind of action carried out by actors in an organi-
zation, one central feature for EISs is to offer access to available types of information
objects in an organization, and to offer functionality for managing access to information
object instances. In a collaborative environment, information objects may be shared among
multiple users, or may be privately accessible by individuals.

To provide such functionality, several technical components must be accounted for by the
EIS architecture, and consequentially by the engineering method that guides the process
of implementing executable software on top of this architecture. At first, the development
method must make use a type declaration system which allows to describe and differentiate
different information object types.

As a second element, the method must either come with its own mechanism to persistently
store instances of information objects and make them accessible by authorized users, or
should allow to interface to components which are responsible for carrying out these data
management tasks.

A third building block of providing information awareness is to include viewers and edi-
tors to allow users to access information objects and potentially edit them. Again, several
options exist to realize such access, e. g., by internally providing editor software compo-
nents as part of the EIS, or by referencing external viewers or editor applications. These
options are to be explicated by the method.

Requirement 7: Incorporate security aspects

Because an EIS is an important information backbone in an organization, data transmis-
sions and technical communication using the system should be secured against intercep-
tion and spoofing by means of security technologies [BFV+11]. An implementation strat-
egy meta-model should explicate security relevant functionality where possible.

Aspects of security may be considered indispensable features of distributed, multi-user
systems in heterogeneous environments. To explicate this aspect separately, and point out
its importance in an engineering method, is especially relevant for commercial, govern-
mental or large-scale organizations, which can be expected to disclose severe vulnerabili-
ties if using insecure EIS components.

Requirement 8: Support the use of graphical user interfaces

To serve the purpose of efficiently supplementing human work, the functionality offered to
users of an EIS should be accessible through intuitive front-ends with a GUI appropriate
for the device used. The engineering method should support the development of GUI
functionality on a level of abstraction, which closely follows the specifics of the conceptual
domain and relieves developers from time-consuming manual development of GUIs, by
automatically generating default GUI components where possible.

63



Requirement 9: Offer automatic processing capabilities

EISs support carrying out processes in organizations. This also includes automatic pro-
cessing steps to be taken into account by the engineering method. While supporting these
is a very general requirement, because all pieces of software are intended to perform au-
tomatic actions in a general sense, there still are variants of architectural design decisions
that come along with the realization of automatic processing steps.

Questions about realizing automatic processing steps cover the range of different program-
ming mechanisms or languages, with which to formulate the desired automatic processing
steps, as well as questions about which physical platform in a distributed environment
should perform an automatic processing step, or which external component is responsible
instead. The method should provide means for explicating these implementation design
decisions.

Requirement 10: Allow for integration of external software components

Interfacing between different software components is a general topic in building dis-
tributed, heterogeneous architectures [Ver96]. An EIS integrates external components to
delegate functionality to.

Interfaces to external components can be established with a wide variety of remote in-
vocation concepts and technologies, such as the use of Simple Object Access Protocol
(SOAP)-based web-services, remote procedure calls, or wrapped command-line invoca-
tions to legacy systems. Options for explicitly choosing between these alternative imple-
mentation approaches should be offered by the method.

Requirement 11: Allow for integration of organization-specific functionality

Depending on the usage scenario, EISs may provide a crucial added value for an organiza-
tion by incorporating specific functionality supporting the organization’s core competitive
advantage. An example would be the integration of location-based geographic data via
mobile devices for a logistic service company, which could, in combination with an ap-
propriate routing mechanism, lead to significant competitive advantages in organizing the
transportation of physical goods.

Generally, a method for EIS development should be open to integrate such organization
specific functionality, to be able to reflect relevant competitive advantages of the organi-
zation in the EIS to be developed. The architecture of an EIS should be designed in a way
which allows for general extensibility of its core functionality by specific features.

Requirement 12: Handle the abstraction gap between enterprise models and imple-
mentation descriptions

A major theoretical issue when dealing with enterprise models on the one hand, and tech-
nical implementation descriptions, such as workflow models or source code, on the other
hand, is the difference in the levels of abstraction [DvdA04]. A business process model

64



(BPM), e. g., is located on a conceptually higher degree of abstraction than executable
workflow models or programs. Detail knowledge is left out, and an adequate blurring of
concepts is performed. BPMs are intentionally imprecise, which allows them to offer in-
formation on a scale relevant to handle the modeled parts of an organization, while still
remaining cognitively accessible for human modelers and model recipients (see Sect. 3.6).

The idea of being imprecise, however, is not compatible with technical implementation
models, because in order to provide a machine-executable process description, the im-
plementations need to be precise. A development method that leads from conceptual
enterprise models to executable software thus needs to provide means to disambiguate
knowledge expressed by conceptual models. The decisions about how concepts are disam-
biguated should be made explicit and persistent over time. This way, the design rationales
are traceable at later points in time, and can be used as a basis for automatically generat-
ing executable technical components as part of a code-generation step in the development
method.

Requirement 13: Support performing the ontological turn from a bird’s-eye-view
perspective to an inner system perspective

Enterprise models and implementation models show inherent incompatibilities, not only
with regard to the level of conceptual abstraction of their elements’ semantics, but con-
cerning the ontological perspective they take in when describing systems. Enterprise mod-
els provide descriptions from a bird’s-eye-view overview perspective on an organization.
When creating and editing enterprise models, the modeling stakeholders look onto a de-
scribed organization “from above”. Except for the rules imposed by the abstract syntax of
the modeling languages, there are no a-priori restrictions on what incidents can be mod-
eled, and what content is expressed in the given domain of the modeling languages.

Implementation-level modeling strongly differs from handling this kind of semi-formal
semantics. When modeling implementation technology, a technical system is described
relative to an underlying technical architecture, which imposes structural and dynamic re-
strictions on the system to be implemented. On the implementation level, the execution of
process-descriptions is not understood as a process flow which happens on its own through
the actions of individually operating actors. Instead, the dynamics of a technical system
implementation occur on the background of an execution mechanism, e. g., a workflow-
model interpreter, which defines the operative semantics of a modeled process. To get
from a conceptual overview perspective to a system view which is stated in terms rela-
tive to a given technical architecture, not only a different level of abstraction is required,
but performing an ontological turn in the way how the descriptions are created. Method-
ical guidance should be provided by a development method to perform this turn of the
ontological perspective.

Requirement 14: Incorporate domain experts into the development process

At an early stage in the engineering process, while creating conceptual enterprise models,
domain experts without technical competencies should be able to participate in the con-

65



ceptualization of requirements towards the software system. These domain experts may
be prospective future users of the software system, managers, or external consultants.

Incorporating these groups of stakeholders at an early point in time into the development
process, allows for capturing requirements towards the software system as early as pos-
sible, which reduces cost for performing later changes, and lowers the risk to put devel-
opment efforts into functionality which later turns out to be useless. It also fosters the
requirement for strengthening trust among stakeholders in the development process, since
the experts can be sure that their expertise has a relevant influence on the following devel-
opment process.

Requirement 15: Strengthen trust among stakeholders

EISs perform a linking role among members of an organization, and bind them together to
constitute a socio-technical system. They provide an interface function between individual
actors on the one hand, and the collective organization on the other hand. By operating an
EIS, an individual member integrates into the organization, and shapes the organization by
contributing and revising knowledge, or taking decisions that influence the organization
in parts or as a whole. Such an environment requires mutual trust among the participants.
Actors needs to trust that the information and collaboration processes made accessible by
the system are authentic, and that his or her identity as part of the overall organization is
authentically perceived by other participants. Resulting from these individual interests in
authentically participating in the organization, all actors have an interest in the EIS to work
according to a common understanding of the organization.

Using enterprise models commonly understood by all involved participants serves to es-
tablish an agreed notion about how the organization is intended to work, and how an
according EIS should support the individual contributions of the involved stakeholders.
They foster a common understanding of the desired EIS functionality, and thus provide
the basis for mutual trust among all particpants involved, both at development time, and
during the operative use of an EIS.

66



5 Enterprise models for model-driven software engineering

5.1 Organization theory concepts in enterprise modeling languages

The concepts and terminology used in enterprise models (EMs) to describe a socio-tech-
nical action system of human stakeholders and resources in an organization consist of a
domain-specific set of terms adopted from organization theory [Daf09, PW09]. EMs in
a narrow sense do not describe technical artifacts, they intentionally lack the terminology
for characterizing details about objects in a technological domain. Some approaches in-
tegrate the notion of enterprise modeling with references to technical concepts specified
by other modeling languages, e. g., by referencing Unified Modeling Language (UML)-
like class diagrams [Fra02, Fra11c]. Others try to use the UML as modeling language for
the conceptual enterprise modeling perspectives [Mar00, Rit07]. This way of integrating
conceptual enterprise perspectives and technical views, however, does not provide a sep-
aration of concerns between conceptual action system modeling and technical software
design, and is not followed in the upcoming research work. The notion of the term “enter-
prise model”, as it is applied throughout the elaboration of the Software Engineering with
Enterprise Models (SEEM) method, exclusively focuses on non-technical organizational
descriptions. Any computation-specific or platform-specific information is separated in
individual models and formulated at different stages of the development process by the
responsible stakeholders.

Concepts from organization theory, which are involved in action system descriptions, typ-
ically reside in the semantic areas of actors, resources, interactions, business processes
and strategy. The following subsections provide an overview on the meaning of these
terms with respect to their use in an enterprise model driven software engineering method.

5.1.1 Actors

The notion of actors in an enterprise model resembles a generalization over people who are
involved in performing processes in the organization. From a coarse overview perspective
in enterprise models, an actor may be understood as either a role, which is to be fulfilled by
concrete persons, a group of persons out of which one or more individuals are referenced,
an individual person, or an automatic entity which actively operates during the execution
of business processes in the organization.

A more fine-grained notion of the concept of an actor is given by business-related con-
ceptualizations of organizational roles, positions, groups and individuals [Fra11a]. Roles
are placeholders for specific sets of features, which can be associated with either groups
or individuals [AG08]. These features can include access rights and further capabilities
which mark a group or an individual as being suitable for performing some specific task
in a business process. Individual persons can be member of one or more groups, and can
fulfill any number of roles. Roles are considered to be fulfilled by a person if either a direct
association between the person and the role exists, or the person is member of a group, the
roles of which are transitively considered to be fulfilled by the individual group members.

67



For implementing a software system, it is relevant to know which detail semantics of the
notion of an actor is intended. A software system needs to know whether specific process-
steps are intended to be performed by individual persons in the organization, or whether
suitable persons can be derived, e. g., by their membership to a specific group, or by having
a certain role attached.

Some enterprise modeling languages provide this fine-grained set of concepts to describe
the notion of actors as language concepts in their modeling languages. However, since
these detail distinctions are not generally available with all enterprise modeling approaches,
and because they may even be considered too detailed by responsible enterprise modelers
and intentionally be left out on the conceptual modeling level, a software engineering
method that bases on enterprise models should offer a mechanism to disambiguate the
notion of actors in conceptual models. This allows to reflect the detail notions of roles,
groups and concrete persons on the implementation level, and opens up the possibility to
formally specify further interpretation options for project-specific settings.

5.1.2 Resources

The term “resource” covers a broad range of possible meaning in enterprise modeling. Any
kind of physical entity can be considered a resource, if a relation to a process-step is to be
explicated. Physical resources may be entities that help in performing a process-step, e. g.,
machinery or transportation devices, or may be transformed or consumed in the course of
a process-step, such as raw material or lubricants. Covering the semantics of each of these
concrete physical resource types in depth, would require to develop individual domain-
specific modeling languages [Jun07]. Such a level of detail is, however, not required in
most cases of enterprise modeling, which is why physical resources in most cases are
merely modeled to exist, identified by a name with natural language semantics. Detail
features of the individual physical resources are out of scope of enterprise modeling.

An important other kind of resources in organizations is information. Commonly shared
information binds together multiple, possibly distributed, actors, and operationally con-
trols and synchronizes different activities in an organization. There are multiple different
shapes in which information can occur. It can be stored persistently as electronic or phys-
ical documents, or it can be temporarily generated and used during the execution of busi-
ness processes [WMB+03]. On the conceptual level of enterprise modeling, occurrences
of information are typically explicated using special kinds of resources. Enterprise model-
ing languages typically combine the notion of information types and concrete information
objects, i. e., the same information resource modeling construct may be used to express in-
dividual existing information objects, groups of such objects, or information objects yet to
be created (see Sect. 3.6). The context of using information resource modeling constructs
is usually sufficient for understanding, in which way an information resource is meant to
be used. An effective software engineering method that builds upon enterprise models,
must take this into account and needs to provide a mechanism to disambiguate the notion
of information resources, as it is intentionally blurred on the conceptual level, to concrete
information type and storage specifications.

68



Software applications used in semi-automatic or automatic process-steps may also be mod-
eled as resources involved in performing the process-step. If an enterprise modeling lan-
guage does not contain an individual element for software, usually a general resource type
is used to express software in a semi-formal way. On the conceptual level of business pro-
cess models, there usually is no motivation to distinguish further concretions of software,
e. g., whether the application is a traditional desktop application, or whether it is invoked
as web service.

It is important to note that an EIS component itself does not have to be modeled explicitly
as a software application. The existence of an EIS is inherent to the idea of automatically
executing modeled business processes, so the EIS acts as an operative interpreting instance
that manifests the semantics behind the business processes and is the default automatic
actor if not otherwise modeled.

5.1.3 Interactions

Enterprise modeling languages may offer constructs for expressing interactions among en-
tities of different kinds. These may serve to, e. g., explicate relationships among different
actors, and specify potential communication channels by phone, e-mail or other means.

Modeling constructs for interaction may be restricted to the relationships among entities
inside the organization, or may extend to external entities on different scales, such as
customers and business partners, other organizations as grouped entities, or entire markets
and market segments [Fra02].

5.1.4 Business processes

Business process modeling provides the central integrating perspective for enterprise mod-
eling [Wes07, Fra11b]. Business process models refer to model elements from different
perspectives on the enterprise, and relate them to the procedural view with regard to the
process-steps which they play a part in. By looking at the procedures happening, these
elements become presented in a configuration specific to the processes in focus, and con-
textualize knowledge about involved actors and resources, to form a complete description
of an organization.

A set of basic element types is commonly used in business process modeling languages,
with comparable semantics in most languages. One of these fundamental element types is
the notion of a process-step. A process-step is any distinct describable action that is per-
formed as part of a business process, either by human actors, machines, or as a software-
supported interaction between both. Process-steps can be described on various levels of
granularity. This means, a process-step may either describe a small step of action, e. g.,
automatically calculating a numerical value, or a coarse-grained composite action, e. g.,
writing a consultative e-mail to a customer and send it with the help of an e-mail client
application. It is up to the conceptual modelers, which level of granularity to choose, and
to decide whether a mix of multiple levels of granularity in a single BPM makes sense.
When process-step actions are carried out, human actors may be incorporated, either as

69



operatively performing personnel, or in supervising management capacities. Also, re-
sources may be involved in performing process-steps, which either may cover physical
resources, information resources, software resources or other process-specific resources.
Business process modeling languages (BPMLs) typically offer language constructs to es-
tablish links from process-step descriptions to actor and resource descriptions, to express
the various types of relationships that can exist among them. By modeling these assign-
ments, BPMs gain a high degree of multi-dimensional integration, and become complex
artifacts of knowledge expression.

Another basic type of model elements in BPMLs are events. Events indicate that some-
thing has happened or that some change of state has occurred. One sub-kind are start-
events, which mark possible entry points into a business process, thus describe occurrences
or conditions, under which an instance of a business process will be executed. Since var-
ious reasons for carrying out business processes are possible, the conceptual modeling
construct of a start-event is specified via a wide range of informal semantics, which de-
scribe the actual meaning of the event in natural language.

Some BPMLs even enforce the use of event elements after every process-step, to explicitly
model the state change that comes with the execution of a process-step. The description
of events during a business process is thus typically related to the description of process-
steps, and the semantics of each non-start event is tightly bound to its surrounding process-
steps. In the most simple case, an event modeled in the course of a business process, only
denotes that the previous process-step has ended. There is no additional semantics attached
to events of this kind. Events with richer semantics may directly refer to possible outcomes
of previous process-steps, e. g., they may model different possible decisions taken during
the process-step, or results calculated. Depending on these outcomes of previous process-
step, the business process may continue with different alternative procedures.

To describe the control flow of a business process, i. e., the logical order in which process-
steps, events and other elements are expected to occur, BPMLs typically provide the lan-
guage construct of a sequence between elements. A sequence in this sense represents the
direct link between two elements in the business process. It if often graphically visualized
in diagrammatic BPMLs as a directed arrow symbol. The term “sequence” does not refer
to a sequential chain of multiple interlinked elements in the context of this work, such a
pattern would rather be referred to as a sub-process.

Besides the three basic element types of process-steps, events and sequences, BPMLs may
also offer language constructs to model additional features of the process control flow,
e. g., the begin and end of parallely executed sub-processes, or the notion of interrupting
events which may occur during the execution of a process or sub-process at an arbitrary
time. Modelers responsible for conceptually expressing BPMs will have to make trade-
offs between complexity and understandability of their models, when they apply these
concepts.

Further advanced BPML conceptualizations suggest additional ways of enriching BPMs
with enterprise specific semantics, e. g., by relating performance indicators and corre-
sponding metrics to process model elements [SFHK11]. These developments show that
the potential of applying enterprise modeling techniques has only yet begun to be pro-

70



ductively exploited, and that a variety of further developments in the field of conceptual
enterprise modeling can be expected in the future.

5.1.5 Strategy

The overall motivations for forming an organization are dependent on its strategic goals
and purposes. There may be manifold reasons why an organization is formed or forms
itself. One typical major reason for commercial enterprises is the gain of economic win.
Although most commercial organizations share this major goal in the long run, they differ
strongly in further breaking down this coarse-grained major goal into intermediate and
subsumed sub-goals.

Strategic goals and purposes are long-term properties of a company, which are considered
to remain stable over time [Win02]. They represent the main drivers for an organization’s
activities and its positioning in the social and economic environment. As a consequence,
the structure and weighing of goals, and the explication of means which serve to reach
them, play an important role for the conceptual understanding of enterprise models. En-
terprise modeling languages typically offer modeling constructs to semi-formally explicate
strategic goals and sub-goals [Köh12], interrelations among goals, e. g., refinement, en-
forcement, or substitution, and relations to the business processes, actors and resources,
which serve as means to fulfill the goals.

Other kinds of concepts that are associated with the strategic level of enterprise modeling
are the ability to express value chains [Fra12] or portfolios. This kind of knowledge pro-
vides an integrating roof under which the individual business process models and multiple
partial structural models are integrated to form a comprehensive common whole. For soft-
ware engineering purposes, there is no primary interest to relate to these conceptual strate-
gic elements, although potentially the knowledge derived from this semantic area can also
be incorporated for methodical support, e. g., to prioritize which modeled business pro-
cesses are to be implemented first, or how a version management for future releases should
be planned.

5.2 Model-driven software engineering as an act of interpretation

5.2.1 Conceptual vagueness in domain-specific modeling languages and models

A domain-specific software engineering approach describes how to utilize knowledge in
domain-specific models to generate software from them. Such an approach provides a de-
fined procedure to link from abstract conceptual descriptions of a domain to formal tech-
nical descriptions of a software system. This process cannot be performed as a syntactic
horizontal transformation from one language to the other, because the ontological perspec-
tives of both realms of description, the described reality covered by the domain-specific
models on the one hand, and technical descriptions of implementation components of the
software on the other hand, are typically orthogonal to each other, and reside on different

71



levels of terminological abstraction. When enterprise models are consulted as concep-
tual models, the underlying concepts of a domain description are based on organization
theoretical notions of roles, responsibilities, flows, metrics etc. Descriptions of software
systems, on the contrary, operate with terminology determined by underlying execution
paradigms and platform application programming interfaces (APIs) of running software,
which in case of object-oriented system design are, e. g., components, interfaces, classes,
methods, types etc. Getting from one realm of description to the other is not merely an act
of translating between two languages. Instead, it consists of a semantic interpretation of
one realm on the background of the other, to understand the semantics of the conceptual
domain, and design a formal system with this understanding in mind.

Interpreting and understanding statements about a conceptual domain requires knowledge
about the context in which conceptual descriptions have been stated, and about the inten-
tions that have motivated modelers to create the descriptions. Conceptual models can only
be understood with this background knowledge in mind, because the abstractions of the
domain concepts, reflected as modeling language elements and model instance elements,
can only serve to point out relevant distinctions to a domain expert, they are not intended
to explicate and transfer all additional knowledge required to understand the modeled con-
cept in total. This would not even be possible, because any natural or formal language
description has to make a cut in going into details at some point, and presuppose culturally
and socio-biologically acquired background knowledge on the recipient’s side [Put88].
In other words, to understand something already implies to have understood other things
about the context and intentions, which are not explicated. If this was not the case, mean-
ing could not successfully be communicated by verbal statements, models, pictures, etc.,
because every utterance would have to transport knowledge about the entire context and
intentions with it, which would make communication ineffectively complex.

For human understanding, it is the natural mode of thinking to involve background knowl-
edge and contextual information as tacit knowledge [Bau99], which enables the under-
standing of further explications. For this reason, in conceptual modeling, it is reasonable
and efficient to exclude detail information and knowledge that can be presupposed by ex-
pert modelers from the language elements and, as a consequence, from model instances.
Conceptual models are intended to concentrate on expresssing those facts, which describe
the unique and relevant aspects of the circumstances in focus. Conceptual vagueness on
this level of abstraction is intended.

While conceptual vagueness increases the efficiency and effectiveness of conceptual mod-
eling performed by human stakeholders, it stands in conflict with the automatic processing
of the conceptual models for further use in a software engineering procedure. Automatic
processing of content in conceptual models requires data processing techniques, which
operate on semi-formal, and possibly incomplete data. This can be achieved by applying
hints for extracting knowledge from models, and by offering a set of default values to be
used when incomplete information is met.

72



5.2.2 Incorporating semi-formal interpretation transformations into model-driven
software engineering with domain-specific models

Domain-specific modeling aims at supporting the interpretation of conceptual models and
the resulting creation of technical system descriptions by automatic or semi-automatic
model transformations and code generation techniques. In a traditional domain-specific
software engineering (DSSE) approach [KT08], the interpretation of the conceptual se-
mantics in domain-specific models is included as within the artifact generation templates,
and, as a consequence, artifact generation templates for a conceptual domain-specific mod-
eling language (DSML) do not only realize a simple structural mapping from model ele-
ments to artifacts components. Instead, their implementation incorporates domain related
decisions about how to interpret model content in the input models, and at the same time,
how to output software artifacts based on these decisions.

To successfully bridge the gap from the conceptual description realm to deployable ar-
tifacts, model-to-model transformations and artifact generation templates used in DSSE
need to be able to perform semantic interpretation. This is an important difference to
artifact generation procedures based on general purpose modeling languages (GPMLs),
which intentionally keep the modeling language free from specific semantics. The SEEM
method explicitly focuses on this interpretation task, and encapsulates it in a separate me-
thodical step with dedicated model elements that allow to formally express the decisions
taken throughout the process of semantic interpretation.

5.3 Related research and existing approaches

The SEEM method touches multiple research questions in the field of business process
modeling, information technology (IT)-business alignment, and model-based software de-
velopment. It partially overlaps with existing methodical approaches in model-driven soft-
ware engineering (MDSE), and there are software products available, which claim to offer
functionality for executing business process models. To relate the SEEM method to these
existing approaches, representatives of related work are discussed in the following sec-
tions.

5.3.1 Model-driven architecture (MDA)

In its general notion, the term model-driven development (MDD), synonymously called
model-driven software engineering (MDSE), refers to a kind software development method,
which uses models to create software by means of transformation procedures from models
to executable artifacts. Typically, model-driven development methods describe a proce-
dure in which the stages of system conceptualization, system design, and system imple-
mentation, use their specific modeling languages, to provide the semantic expressiveness
required to express design decisions on the corresponding stage. In this general sense, the
proposed SEEM method is a model-driven development method, too.

73



Development methods, which consult models for expressing design decisions in a software
development process, but do not come with a continuous chain of model transformations
for creating executable artifacts from the models, can generally be subsumed under the
term Model-Driven Architecture (MDA). MDA approaches use models as means of semi-
formal communication among software architects and developers. Design decisions may
be expressed with equal modeling constructs as in an MDD approach, however, the real-
ization of these decisions is performed with traditional manual implementation techniques.

The general MDD and MDA conceptualizations form two poles of a continuum, between
which any mixture of the approaches can be realized. For example, an MDA procedure
may be enriched with a set of supplementary model transformations, which partially re-
alize a formal transformation relationship between models and artifacts, but still plan for
manual development work to be part of the artifact generation process.

Speaking about MDD and MDA in a general notion does not specify whether domain-
specific modeling languages are used, or so-called general purpose modeling languages.
In a narrower sense, the term MDA is a trademark label of a software development method
issued by the Object Management Group (OMG) organization [Obj03]. This method de-
scribes options for possible realizations of a model-driven development procedure, and
suggests to use general-purpose modeling languages of the UML.

CIM, PIM, and PSM models in MDD The process of spanning the bridge from con-
ceptual models to implemented artifacts in MDA is conceptualized in three stages along
the phases analysis, design and implementation, with each stage having models of an as-
sociated type as its central objects of interest. During the development process, the level
of conceptual abstraction is lowered from stage to stage by transforming a model from a
higher conceptual abstraction level, to a model on a lower level of abstraction.

Models for capturing analysis conceptualizations, describing the problem space of a sys-
tem to be developed, are called computation independent models (CIMs) in the context
of MDA, because they are expected to describe requirements towards the system indepen-
dent from any technical implementation. Models that carry information about the system
design are named platform independent models (PIMs), as they conceptualize architec-
tural options for technically realizing the desired system, without, however, specifying
implementation details. The latter are finally captured for the implementation phase in
platform specific models (PSMs), which reflect technical components of the system to be
developed.

Although the individual models are associated with different levels of abstraction, and,
as a consequence, describe different concepts and objects of interest, the OMG’s MDA
approach suggests to use the same general purpose modeling languages (GPMLs) as lan-
guages for describing concepts on each of the three stages.

The UML as standard modeling language for MDA and MDD The OMG’s MDA
and MDD approaches are intended to complement the UML modeling language specifi-
cation with a procedural framework in which the use of the UML as part of a software
development process is methodically described. As a consequence, the model types of-

74



fered by the UML are used in any stage of the methods. Using the UML languages on the
implementation level to express PSMs is useful, because the modeling constructs offered
by the UML typically are generalized abstractions over software technical artifacts, e. g.,
class diagrams mostly contain elements which can directly be mapped onto the constructs
of object-oriented programming languages. This supporting argument for using the UML
still holds true for PIM models, which also describe formal system structures, for which
the UML can be said to be an appropriate choice of modeling language.

However, making use of the UML language family to conceptually represent the knowl-
edge in CIMs, i. e., in models, which intentionally exclude the technical perspective from
there modeled objectives, appears to be one methodical deficiency of the overall MDA
conceptualization. If the aim of a model is to explicitly describe knowledge beyond tech-
nical and formal system structures, the language means for performing this description
should not directly reflect these constructs.

While MDA specifies model types and transformations between them, it does not aim at
fully relying on automatic transformations from CIM to PIM, PSM, and finally to exe-
cutable artifacts. Over time, efforts for maturing MDA to an approach which resembles
a full MDD engineering method, using entirely automated model transformation proce-
dures, have not led to a successful outcome [Obj03]. The use of the general purpose UML
languages has turned out to be too inflexible to capture all knowledge required for a fully
automated transformation procedure. Consequently, the MDA approach typically plans
all involved models to be edited manually and enriched with additional implementation
specific artifacts, e. g., program code.

In MDA, models are used to help structuring the development process, and to express rel-
evant design decisions in a semi-formal way for better cognitive grasping by the involved
developers. However, MDA does not necessarily provide a substantial shift in increasing
development efficiency, because the approach cannot guarantee that the methodical means
for expressing CIMs are sufficient to capture relevant requirements and desired features of
the prospective software system. Depending on the problem space, MDA might be help-
ful, but the method itself does not provide means to estimate, to which extent the use of
GPMLs is efficient for a given requirements scenario.

It thus turns out that the modeling languages for expressing the conceptual and computation-
independent models are a central weak point in the overall approach. This weak point has
been one motivating momentum for an alternative development method conceptualization,
which suggests the use of problem-adequate modeling languages to engage conceptual
models as starting points for software development processes, as it is done by the SEEM
method.

5.3.2 Rational Unified Process (RUP)

To complement the set of modeling languages introduced by the UML with procedural
advice on how to apply these languages in a software development project, the authors who
created the UML originally elaborated a method called Unified Process in parallel to the
UML, which was later renamed to Rational Unified Process (RUP) [Kru03, Rat01, SK08].

75



The name “Rational” refers to the software company, which originally offered the method
as a commercial product.

The RUP is actually a method framework, which does not describe concrete procedural
steps for developing software, but imposes a structure on software development projects
to be filled with technical development procedures. This is achieved by combining two
traditional means for structuring methods, which are methodical perspectives, and me-
thodical steps. Perspectives and steps are structured in an orthogonal way, forming a
two-dimensional framework, in which each perspective is to be considered specifically in
each step.

The RUP combines several concepts of object-oriented software planning, design and im-
plementation in one joined framework [Kru03]. As part of multiple perspectives in each
project phase, the method incorporates the notions of both business modeling, which re-
sembles a general idea of conceptual domain knowledge specification by enterprise model-
ing, and requirements specification, followed by the traditional methodical steps analysis,
design, implementation, test and deployment, and administrative perspectives. The RUP
does not incorporate a methodical link for systematically interconnecting business model-
ing with requirements engineering. Nor does it provide means for systematically relating
implementation-level design-decisions with the rationales behind conceptual elements ap-
pearing in the business models. Both aspects are regarded as separate methodical means,
and interlinking between them is left to development work throughout the phases of the
method.

The RUP has a much wider and more general focus than the SEEM method. It provides
a generic project handling framework including aspects of project management and in-
frastructure planning, into which the SEEM method could be interwoven as methodical
procedure for software development. In this case, SEEM would fill-in traditional notions
of business modeling and requirements engineering, and blur the distinctions between both
of them internally in the RUP framework, while still leaving the entire method applicable.
Further ideas on integrating SEEM into the RUP shall not be discussed at this point.

5.3.3 Domain-specific software engineering

In its basic form, a domain-specific software engineering (DSSE) method requires three
components to be made available prior to applying the method for software generation
[KT08]. At first, a domain-specific modeling language is to be developed which provides
means to express knowledge about a domain in a terminology that is well-known to domain
experts. The language must be developed together with appropriate tooling support in form
of a model editor, which allows to create and manipulate model instance in that language.
This editor typically is a diagram editor, which uses graphical facilities to represent model
concepts visually.

The second methodical component required for DSSE is a domain API, which provides
abstractions of both conceptual features of the application to be developed, and technical
features of the operating system and underlying device platform on which the generated
application is intended to be run [KT08]. These abstractions may come in the form of

76



abstract specifications, such as object-oriented interfaces or abstract classes, or as a set of
project-specific API functions, which provide callable building-block functionality of the
system to be developed.

The building-blocks provided by the API are invoked and used by program code that
gets generated in the course of applying the domain-specific model-driven development
method. This is done using code generation templates [CE00], which are the third kind
of methodical components to be created before the method can entirely be applied. Code
generation templates are programmed artifacts, which combine at least two semantically
orthogonal kinds of program code: an “outer” set of template language constructs, which
gets interpreted by a corresponding template language interpreter, and a set of “inner” tar-
get language fragments, which are wrapped into the template language constructs, and are
assembled to complete program code artifacts according to the statements of the wrapping
template language at build time.

To develop code generation templates, a higher level of software engineering expertise
than for usual programming tasks is required, because code generation templates inten-
tionally mix a meta-level of outer template language statements, and a concrete level of
target programming language artifacts. Creating code generation templates requires a de-
veloper to be able to invent and apply programming patterns, which combine both levels of
abstraction. Traditional development using a single programming language demands from
a developer to be able to anticipate the behavior of a language’s execution mechanism at
runtime, based on the program code as it is written and readable. To make a code genera-
tion mechanism output executable program code, however, a developer has to imagine the
resulting behavior from program code, which does not exist as a static artifact yet, but will
itself be the result of an execution mechanism run at build time.

A well-designed API, which provides suitable abstractions for the application and the
platform, can help reducing the complexity and thus the effort in creating code generation
templates. There is a design trade-off between realizing functionality in the API, or im-
plementing it via fragments in the code generation templates. Code generation templates
and the API will thus most likely have to be iteratively developed, with experiences in cre-
ating one set of components influencing the other. Consequently, if software developers
are available, who are capable of developing both kinds of components simultaneously, a
significant increase in development efficiency can be anticipated.

The proposed SEEM method borrows some fundamental principles from domain-specific
modeling (DSM), while it also enhances traditional DSSE approaches with new solutions.
Concepts common with DSSE are the notion of the separation between a domain-specific
model on a high abstraction level, and implementation artifacts on a lower abstraction
level, which get derived by a defined transformation procedure from the higher level ab-
straction model. In combination with this general approach, the notion of a target archi-
tecture is important in DSSE for defining the transformation procedure [KT08].

The SEEM method also takes the notion of target architectures into account. As an en-
hancement to DSSE, it offers fine-grained methodical means by which the characteristics
of target architectures are specified. This is done by incorporating the creation of imple-
mentation strategy meta-models for each target architecture in a development project, and

77



the instantiation of implementation strategy model instances, which describe concrete tar-
get architecture components and functionality that is to be used in a later artifact generation
process (see Sect. 6.2.3). This approach allows to separate the description of conceptual
domain-specifics in the source DSML model on the one hand, and the specification of de-
tails about the technical target architecture domain in implementation strategy models on
the other hand. Both types of models get interwoven by the mapping model. In combina-
tion, they provide sufficient information to run an artifact generation procedure as the final
development step in the method.

This proposed approach solves the perceived phenomenon of different kinds of concep-
tual and technical domains described in the same domain-specific model, as it can often
be discovered in DSSE projects [LKT04]. In traditional DSSE projects, which are typ-
ically restricted to using a single DSML, knowledge about the conceptual domain, and
details about the technical implementation domain, as a consequence get mixed together
in single domain-specific model instance. Relying on separate implementation strategy
models providing information about the technical target architecture domain as orthogo-
nal domain-specific models, allows to keep the conceptual domain models free from any
implementation details. For the very purpose of the SEEM method, the enterprise mod-
eling language must be expected to contain conceptual domain knowledge only, to allow
to incorporate non-technical domain experts in early phases of the software development
project (see Req. 14), and to be able to use any existing enterprise modeling tools and
methods as the entry point into the method (see Req. 2). In this sense, the enterprise
modeling languages used in SEEM resemble the first sub-type of DSML identified by
[LKT04], which are DSMLs exclusively based on domain expert’s concepts, without any
implementation details incorporated.

The original DSSE approach considers a single domain-specific model as sufficient basis
for a development procedure, as long as the corresponding modeling language makes sure
to offer all required expressive means to capture knowledge required to generate the entire
target software system as desired. This approach comes with the fundamental drawback
of forcing all kinds of information required to build software into a single model, with a
single underlying, project-specific modeling language. As a consequence, the DSML used
for these purposes cannot offer a clean separation of abstraction layers, because it is re-
quired to mix concepts from multiple perspectives and abstraction levels into one language.
Realizing such a mixture, the language does not distinguish between conceptual domain
knowledge on the one hand, and technically related knowledge about the implementation
domain on the other hand. The potential for reusing at least some aspects of either of the
two domains is low using this approach, because domain-specific conceptual aspects and
technical aspects are interwoven in a single language with respect to a concrete develop-
ment project, which is less likely to be repeatably useful for other development tasks than
distinct conceptualization of the organizational domain and the technical domain.

As a more structured alternative to using a single monolithic transformation for bridging
from conceptual models to implementation models, abstractions over the knowledge that
is incorporated in a single transformation can be made and collected in auxiliary mod-
els, which hold information about how elements from the conceptual models are mapped
to implementation-relevant knowledge. If such auxiliary models are applied, several de-

78



sign decisions and implementation contingencies about the software to be developed can
be cleanly explicated by the use of models instead of weaving them into transformation
specification source code.

5.3.4 Enterprise architecture

Research activities around formal and semi-formal descriptions of organizations and en-
terprises have been undertaken since the second half of the 1980s, beginning with [Zac87].
They have evolved as the conceptual foundations, which today underly enterprise model-
ing activities.

Unlike enterprise modeling, enterprise architecture is primarily located on a conceptual,
business-oriented level, and it does not cover aspects, such as, development of formal
languages, modeling tool development, or automatized model analysis [Gro04, Lan09,
LPW+09]. The originators of enterprise architecture did not envision to use enterprise
architecture description artifacts as the requirements foundations for software engineering
projects. However, enterprise architecture (EA) and enterprise model (EM) share a com-
mon understanding of description perspectives and concepts to describe organizational
structure as well as an organization’s activities.

EA is primarily looking at the business side, discussing means for strategic planning, oper-
ative control, and for governing organizations to establish structure and rules for corporate
behavior. EA research aims at providing managerial tools and guidelines to support shap-
ing an organization in the desired ways.

From an EA perspective, EM provides a bundle of methodical means to guide the tasks
of EA. EM enhances the methodical range by formal language construction and machine-
supported model-editing via software model editors.

5.3.5 Business process model execution

From a theoretical point of view, a number of research questions are addressed when en-
terprise models are consulted for deriving executable software, especially when business
process models are to be interpreted as executable workflow models.

In [ODvdA+09], a method is suggested to convert models in the Business Process Model-
ing Notation (BPMN) to executable Business Process Execution Language (BPEL) work-
flows. Other process modeling languages are not looked at, neither are other enterprise
perspectives, such as organization models. The method is limited to generate BPEL mod-
els, which are to be manually revised by software developers. The SEEM method has
a wider focus and aims at integrating multiple types of enterprise models on a method-
ological level. Since multiple input model types, and also diverse target architectures are
supported by the SEEM method, the method may be configured to read in BPMN models,
and generate BPEL, too. The implementation of the corresponding model transformations
and code generation templates may in such a case be realized, e. g., based upon the work
in [ODvdA+09].

79



Another approach for “bridging the gap between business models and workflow speci-
fications” is discussed in [DvdA04]. The central idea of the proposed procedure is to
methodically guide human modelers, i. e., domain stakeholders, architects and developers,
through a process of human modeling actions to transform a given conceptual business
process model to an executable workflow model. The methodical procedure is designed
in a way to ensure that the resulting workflow model fulfills the criterion of the sound-
ness meta-property. With respect to providing guidance for human developers, the SEEM
method shares some fundamental goals of this approach, which are, however, realized
using different concepts (see Sect. 6.4).

In [BBR11], an approach is suggested, which explicates relationships between conceptual
elements in business process models, and workflow elements, through an individual type
of model, called the Business-IT Mapping Model (BIMM). The suggested approach ap-
pears like a specialization of the SEEM method, since the general notion of an explicit
mapping between business-level model concepts and implementation concepts using a
mapping model is also a building block in SEEM. The approach in [BBR11], however, is
not generalized to map to arbitrary variants of target architecture platforms expressed via
implementation strategy meta-models, and the transformation procedure is not method-
ically separated into a dedicated initialization phase with a subsequent code generation
phase.

Enterprise models comprise more than business process models only. This is taken into
account by [ZSZ11], in which a general methodical approach is suggested for developing
software from EMs. The approach uses a specifically adapted conceptual modeling lan-
guage to capture enterprise knowledge. Additionally, several link types are introduced,
instances of which can reference from elements of the conceptual model to elements of
implementation-level modeling languages. Implementation-level elements are not further
described by the proposed approach, it seems to be inherently assumed that existing mod-
eling techniques for technical artifacts can directly be applied for this task. Since no further
intermediating layer exists in the approach between enterprise model concepts and imple-
mentation, the method assumes a single-step transformation remaining to be developed
for realizing a concrete development procedure. By using a specific set of modeling lan-
guages to capture conceptual knowledge, incorporating also a “requirements model” and
a “concepts model”, the approach relies on some specific prerequisies, which are not met
by existing enterprise modeling language in use. This reduces the degree of reusability
of existing enterprise models and enterprise modeling methods. The SEEM method, in
contrast, allows the adaptation of diverse enterprise modeling languages to the method.
It also uses dedicated modeling constructs to explicate relationships between enterprise
model elements and associated implementation strategies, which in turn allows to split the
overall transformation into multiple steps for reducing complexity.

An example of a concrete implementation of a transformation from an existing set of
conceptual enterprise models to executable artifacts is presented in [Jun04]. The approach
identifies syntactic similarities and differences between the Multi-Perspective Enterprise
Modeling (MEMO) family of enterprise modeling languages and standardized workflow
descriptions in the XML Process Definition Language (XPDL) language. Based on this
examination, a set of auxiliary modeling languages is derived, to capture missing detail

80



information not represented by MEMO constructs. A code generation procedure weaves
together the information from the original conceptual models with the enhancing technical
detail models, to generate executable XPDL.

One basic assumption, which is taken by [Jun04], is that every model element in con-
ceptual models, especially the constructs describing business process models, can directly
be associated with implementation-level concepts of the XPDL language (“Every process
[. . . ] will be mapped to exactly one activity”, [Jun04] p. 41). While this assumption is
a pragmatic restriction to keep the transformation procedure manageable, it does not take
into account the different levels of abstraction between conceptual enterprise models and
workflow implementations, which, among others, may come into notice by diverse degrees
of granularity. In fact, it is a declared goal of conceptual business process modeling, to
provide a less detailed and coarser grained view on processes than implemented workflows
do. To cope with this fundamental difference between conceptual models and implemen-
tation models, a transformation procedure should provide means to change the level of
granularity between input and output models, too. The approach suggests to perform re-
finements concerning the granularity of business process models on the conceptual level,
by using a decomposition feature for individual process-steps. This resembles the manual
modification of conceptual models to become as fine-grained as needed to a subsequent
direct mapping to implementation steps.

Some research focuses on model-driven configuration of software, rather than model-
driven software development [RMvdAR06, WHMN07, Zie10]. The fundamental require-
ments arising from transforming from a conceptual description layer to implementation-
related artifacts, however, remain the same in this area of application, this is why the
respective publications do not provide significant additional scientific value compared to
publications about software development from the same groups of authors.

[MLZ08, RM06] discuss a number of conceptual mismatches between BPMN [Ini11] and
BPEL [Men06, OAS07], which in the first place is BPMN’s flow oriented process mod-
els, versus BPEL’s block-oriented approach. A flow-oriented way of modeling processes
makes use of interconnecting sequence elements between individual process-members
(i. e., between process-steps and events, if applicable). Using a flow-oriented approach,
alternative branches, e. g., are expressed by more than one outgoing sequence out of a
process-member. Loops, e. g., are expressed by a circular structure of multiple sequences.
In contrast to the flow approach, a block-oriented way of expressing sequence-flows makes
use of specific language constructs, which determine, in what way inner elements of the
block are executed. There are, e. g., If-blocks to express conditions, While-blocks to
form loops, or Flow-blocks to indicate parallelism.

5.3.6 Analyses of business process models

For the purpose of semantically analyzing conceptual enterprise models, especially busi-
ness process models, some fundamental research has been carried out about deriving spe-
cific meta-properties from given model instances. The term “meta-property” is used here
to refer to a proposition which gives reflective information about a model instance. It is
distinguished from the term “property”, which refers to instance values and relationships

81



specified in model instances. Deriving such meta-properties about processes and sub-
processes would allow to perform an extensive automatic semantic analysis of enterprise
models as part of the proposed SEEM method, when it comes to semantically analyzing
the conceptual models, in order to derive default implementation strategies from them.

In [FFK+11, vDMvdA06] and others, the semantic property of soundness is discussed. For
a process model to be sound, means to structurally ensure that any execution instance of
that model will surely reach a termination event in the process model, i. e., every process
runtime instance will surely stop after some time. When a process model is proven to
be sound, it is ensured that no deadlocks can occur during runtime execution, and that
no runtime instances can reach an endless loop. More generally, if focused on partial sub-
processes of entire business processes, the soundness property can guarantee that a specific
event inside an overall process model will be reached, after a specific previous sub-process
has been executed. Detecting this property on input process model instances of the method
may help to automatically decide which implementation strategy to use for the modeled
constellation.

Additional meta-properties of process models, which can be derived via semantic analy-
sis of model instances, are, e. g., reachability and executability, as they are discussed in
[WHM08a, WHM08b]. In future elaborations of the method proposed here, this research
may flow into the development of more fine-grained semantic analyses of conceptual en-
terprise models, in order to provide adequate means for automatically deriving suitable
default implementation strategies associated to modeled business process-steps. In com-
bination with these considerations, quantitative means for measuring structural properties
of business process models [GL06] might also turn out to be effectively applicable.

Specific meta-properties, such as the possibility for conflicts of mutual exclusion, which is
a generalization of the idea of deadlocks, are examined in [SSMB11]. For possible future
enhancements, these approaches can be adapted as validation steps in the overall SEEM
method.

A general notion of “forbidden behavior” is consulted in [SM06], to gain a theoretical grip
on how correctness of process models can be defined. The proposed approach consists
of a stricter notion of how to define correctness, compared to the notion of soundness,
using a Petri-net-like intermediate language to represent process models originating from
event-driven process chain (EPC) models. With the help of theoretically well-known Petri-
net analysis techniques, aspects of validity in the original EPCs can be verified. Such an
approach in a generalized form may be one candidate for semantically validating busi-
ness processes in an early step of the SEEM method, if applied as implementation of the
enterprise model validity check contained in the methodical procedure (see Sect. 6.4.1).

5.3.7 Incorporating actor and resource models into software engineering

BPMs form the most integrating perspective in enterprise modeling by giving insight into
the executed procedures, and at the same time referencing resources, responsible actors,
and possibly strategic considerations. Besides BPMs, dedicated modeling languages for

82



resources and for organizational structure can provide additional information that may be
incorporated into a model-driven software engineering procedure.

A generic resource meta-model to be used for describing resources in the context of an
executable workflow is presented by [zM99]. The work is explicitly motivated by the need
to complement workflow specifications with detailed formal descriptions of resources in-
volved in the workflow, which also covers automatic resources, such as external applica-
tions or production planning and control (PPC) and computer numerical control (CNC)
systems. One of the additions given to traditional simple resource models in [zM99] is the
notion of roles for resources. For the dynamics of how to allocate resource instances to
workflow steps at runtime, the article examines possible options in addition to the static
meta-model.

Integrating different existing kinds of resource descriptions into a unified view is the main
focus of [DDnHS99]. The idea behind the presented approach is to provide a common
abstraction layer for different kinds of resources, which on the one hand provides a unified
interface to reference any resource from workflow descriptions, on the other hand offers a
common conceptual roof to build resource management systems. Resource management
systems efficiently handle the allocation of resources from different sources during work-
flow runtime. The work presents a prototypical approach to develop such a system, and
introduces a resource query language for standardized access to resources. The underlying
resource model assumes a hierarchic structure among resources, introducing additional
resource roles is also discussed by the article.

In [JC04], a lack of robust standards for integrating organizational perspectives apart from
business processes into workflow applications is identified. It serves as the motivation
to create an implementation-close contribution, which proposes a resource management
framework specifically based on web-service technology. The environment architecture
of the proposed approach is composed of a web service-based workflow execution engine
(e. g., a BPEL interpreter) as the central execution component, which gets enhanced by
a resource binding service, a work queue service for the organization, and a work queue
service for individual agents.

Older foundations of work about the link between software and organizational struc-
ture models can be found in the area of role-based access control (RBAC) authorization
[FKC07, SFK00]. Multi-user software systems, which make use of RBAC to determine
access-rights to functionality, require configuration about available roles, relationships
among roles (e. g., “includes” or “is part of” relationships), and user accounts with their
association to roles. The information required to configure such systems can be derived
from simple models that allow to specify entities of types role and user, and are capable of
reflecting associated relationships among them.

5.3.8 Strategic models for software engineering

While some research has been carried out on deriving software from business process
models, resource models, and organizational models, those model types of an enterprise
modeling family, which allow for expressing long-term strategic goals and measures, have

83



not yet been integrated into model-driven software development processes. Research about
the relationship between conceptually modeled business goals on the one hand, and an
IT oriented view on the other hand, is focused on deriving IT strategy planning and IT
management guidance from business oriented strategy models [BAPC08, GPZ11]. Vice-
versa, incorporating strategic IT concerns into business strategy modeling is also discussed
by this research. The Strategic Alignment Model (SAM) [HV93] is one of the initiating
conceptualizations for bringing business strategy and IT strategy together.

An integration between IT strategy conceptualizations and model-driven engineering tech-
niques would in principle be possible, e. g., by using information about related strategic
goals to prioritize access to functionality in the user interface presentation, or by deriving
access-rights for the generated functionality, allowing only access to features on a level of
strategic relevance, if a current user is authorized for that level.

5.3.9 Process-centered software engineering environments (PCSEEs)

Software products are available, which give support for making business process models
machine executable. These products do not claim to solve the theoretical issues related to
the mismatch of abstraction levels and viewpoints. Instead, they offer a set of pragmatic
techniques to implement process-aware information systems (PAISs) from modeled busi-
ness processes or workflows. These kinds of development environments constitute a class
of process-centered software engineering environments (PCSEEs) [DvdAtH05, Gru02],
which are specialized development tools that make use of process specifications to cre-
ate software. Currently, three relevant products are available in the market, which are the
ACTIVITI BPM PLATFORM, the JBPM package, and BONITA OPEN SOLUTION. These
are individually looked at in the following paragraphs. All of these products are avail-
able under open-source licenses, the respective vendors make their businesses by offering
consulting services as the commercial branch of their development activities.

Activiti BPM Platform ACTIVITI [Act, RvL11] is a framework for the JAVA program-
ming language which allows to specify an implementation for BPMN process models
in the JAVA programming language. It provides an API, which interfaces BPMN con-
cepts with object-oriented JAVA elements, and a runtime execution interpreter for execut-
ing JAVA-implemented BPMN processes. ACTIVITY allows to embed this interpreter into
regular JAVA programs, which makes it possible to use BPMN implementations the other
way round, and invoke a BPMN-orchestrated piece of software as part of a JAVA program.

The ACTIVITI framework focuses on the reflection of BPMN concepts into a JAVA API,
and on providing an interpreter engine to execute BPMN processes. Other facilities, such
as a BPMN model editor, or an integrated development environment (IDE), in which man-
ual development work takes place and from which ACTIVITI’s components are invoked,
are not part of the ACTIVITI solution. Resulting from this, ACTIVITI is not bound to a
specific development environment, and can be used with multiple other applications and
IDEs. Since currently, the ECLIPSE IDE [Eclb] is frequently used for many model-based
engineering projects, one default environment for ACTIVITI is ECLIPSE, and there are
plug-ins available which offer an integration of ACTIVITI into ECLIPSE.

84



A typical workflow when developing with ACTIVITI starts with editing a BPMN model
from a conceptual point of view with a model editor, which stores the model in the standard
Extensible Markup Language (XML) format for BPMN. Although this model will not
initially contain details about its technical implementation, it has to be designed on a level
of granularity, which allows for associating technical implementations with each process
model element.

In a second step, technical implementations are configured, either by selecting pre-set
functionality from the ACTIVITI API and set parameters as desired, or by providing custom-
written JAVA classes. The classes to be developed implement interfaces or inherit from
superclasses in the ACTIVITI API, which makes them accessible from ACTIVITI’s BPMN
process execution engine. E. g., a JAVA class, which implements a process activity as an
automatically running JAVA fragment, will implement the API interface org.activi-
ti.engine.delegate.JavaDelegate.

Before the BPMN model can be executed this way, information about which JAVA imple-
mentations are intended to reflect the BPMN elements, needs to be added to the BPMN
model at development time. ACTIVITI suggests to add this information as detail anno-
tations in the BPMN model, together with configuration parameters and other technical
detail information for the implementation.

Finally, when JAVA implementations for the individual process-steps are available, and
the BPMN model has been annotated with detail information about how to apply them
for process execution, the annotated model can be interpreted by the ACTIVITI interpreter
engine and executed as a program.

The ACTIVITI solution is specially focused on JAVA development, and requires manual
coding in this language for most use-cases in practical environments. There is no concep-
tual way offered by ACTIVITY, which would allow to bridge the conceptual gap between
BPMN process descriptions and technical software artifacts. Instead, ACTIVITI requires to
create BPMN models on a fine-grained, low abstraction level, and already from a technical
perspective, thinking in terms of web-service invocations and other technically determined
distinctions. Hence, ACTIVITY cannot be categorized as a solution that operates on enter-
prise models in a conceptual sense to turn them to executable software.

jBPM In the same way as ACTIVITI, JBPM [JBo11] is a lightweight JAVA framework,
which in its core consists of a BPMN execution engine, and a JAVA API for providing
implementations for BPMN processes.

Around this set of core functionality, additional components have been created to supple-
ment JBPM development. Among them are an ECLIPSE-based, as well as web-based,
process model editor to edit BPMN 2.0 compatible BPMs. Further supplementary compo-
nents are implementations for WS-HUMANTASK [Org10a] services.

The close relationship between JBPM and ACTIVITI results from common development
roots in earlier versions of the JBPM project [Rüc11]. As a consequence, there a few
principal differences between JBPM and ACTIVITI, which is why it is refrained from
further describing JBPM.

85



Bonita Open Solution The software product BONITA OPEN SOLUTION [Bon, STH10]
provides a development environment for process-driven software development. It is freely
available as an Open Source Product. BONITA contains an integrated model editor for a
derivate of the BPMN modeling language. Process models created with this editor are
subsequently enriched with detail information about their implementation using a set of
configuration dialogs offered by the BONITA development tools. BONITA provides a mul-
titude of implementation options, which are, however, limited to the options offered by
the BONITA environment. BONITA is primarily targeted to generate form-based web-
applications. Besides these software development capabilities, the environment also sup-
ports process simulation and report generation tasks.

When developing with BONITA, BPMN models are enriched with proprietary additions
to express fine-grained implementation-level semantics. E g., BONITA uses a more differ-
entiated set of resources to represent IT system components. While this is a consequent
approach to realize BONITA’s development method, it breaks the standard compatibility to
BPMN, making the modeling language effectively more complex than the BPMN standard
intends, and requiring a proprietary model editor to make the additional model options ac-
cessible and editable for developers. This monolithic approach of integrating a proprietary
process model editor requires additional learning efforts and causes switching costs, espe-
cially if a collection of process models already exists in another model format, which may
not be possible to be reused.

BONITA does not conceptually distinguish between a business process description and a
workflow model. From BONITA’s perspective, both kinds of models are interchangeable
and identically expressed in the BPMN modeling language. To use such models as a basis
for further software development, the modeler already has to decide for the appropriate
granularity and low level of abstraction to express process-steps appropriate to be inter-
preted as automatable work units. This means, BONITA requires BPMN merely to be used
as a workflow language. BPMN models which express highly abstract conceptual business
process descriptions will not be transformable to executable software using the BONITA
approach.

The development approach realized by BONITA can be reconstructed in terms of the pro-
posed SEEM method. Describing the BONITA approach with SEEM concepts, it uses a
fixed process modeling language with links to other modeling perspectives such as a re-
source view. In combination, both form a specific set of enterprise modeling constructs.
Since BONITA uses its own modeling language, there is no adapter transformation avail-
able to use an external editor, such as in SEEM (see Sect. 6.3.1). Mapping relationships
from conceptual elements in the process model to implementation constructs, which in
SEEM can be freely configured using implementation strategy meta-model constructs (see
Sect. 6.2.3), are kept implicit in BONITA, however, come with a wide variety of config-
uration options to allow to choose different implementation variants. The form-oriented
approach offered by Bonita resembles an application of the SEEM method, which primar-
ily makes use of document-editing interaction with users, and uses form-based editors for
information display and manipulation.

86



5.3.10 Self-referential enterprise information systems

Self-referential enterprise information systems are characterized by incorporating enter-
prise models, which describe the processes and business constellations the information
system is meant to support, as editable business objects into the EIS itself [FS09]. One way
to realize such a self-referential system is the use of enterprise models as user-interfaces
to provide interaction mechanisms for invoking functional building blocks and business
objects of the system.

The general architectural conceptualization of a self-referential EIS sees such a system as
an enhanced EIS, combined with the functionality of an enterprise modeling environment
(EME). An EME is a software application which allows for creating, editing and storing
enterprise models, usually by offering multiple model editors, and management function-
ality to store and organize model artifacts. In such an environment, the functional features
offered by the EIS are partially realized based on top of EME functionality, or parts of the
EME are used as GUI for the EIS.

There are no implementations of self-referential EIS yet. The general architectural con-
ceptualization of self-referential EISs, combined with the idea of innovative use-cases
such a system allows to support, yet remain in a state of a scientific proposal for possible
future research on EIS. The method developed in this work is specially suited to build
self-referential EIS, because it already integrates the notion of EMs with EIS at design
time and build time. Runtime integration of EME functionality, which also reflects EM
concepts for its specific purposes, can be described with derived concepts. These could be
made available in a configuration of the method that especially accounts for the develop-
ment of self-referential EIS.

The architectural constellation of a self-referential EIS, understood as a combination of
traditional EIS functionality together with an EME, is depicted in Fig. 14. To indicate the
remaining research questions about how to conceptually interweave the EIS and the EMEs,
the internal relationship between the two is indicated by a double-sided arrow labeled with
“yet unexamined relationship”.

yet unexamined 
relationship

Self-referential Enterprise System

Enterprise
Information

System

Enterprise
Modeling

Environment

Figure 14: Basic architectural pattern of a self-referential enterprise system (according to
[FS09])

87



5.4 Deficiencies of existing approaches and contributions by the proposed method

The sketched approaches for deriving executable software from enterprise models share
some fundamental deficiencies, which are to be overcome by the SEEM method suggested
in the work at hand.

One common problem induced with several of the existing approaches is the use of the
same model artifact both for the representation of conceptual business-level concepts, as
well as for architectural and implementation-level details. This affects all practical soft-
ware products available for BPMN execution, such as ACTIVITI and BONITA. It is a
wrong assumption that refining a model with technical details necessarily means to an-
notate existing conceptual models with that information in-place, i. e., using additional
model elements in the same model. Regarding the fact that implementation technology
is contingent and might be less stable over time than conceptually modeled knowledge,
any dependency between enterprise modeling language constructs and implementation
language constructs reduces maintainability over time. It also limits means to express
different implementation-level design decisions for alternative target architectures, which
may provide distinct technological realization options with different detail information
required. Therefore, it is desirable that a method for enterprise model driven software en-
gineering separates the conceptual business-level knowledge and the technical implemen-
tation details into separate languages, and provides means to loosely couple both levels of
abstractions, without interfering the individual language definitions.

In those cases, where this separation is taken care of, and distinct model artifacts are me-
thodically used to represent different levels of abstraction and viewpoints, new problems
arise regarding the relationships between these models. This is, e. g., the case with the
MDA approach, in which implementation models are created by model transformations
from higher-level business-perspective models. In this constellation, the model transfor-
mations establish implicit dependencies among the different levels of abstraction, which
are usually not back-traceable, after the implementation-level models have been created.
As a consequence, changes that are made to either of the involved models may create in-
consistencies among the different models. When re-running model transformations after
changes to conceptual models have been done, typical problems of overwriting manual
changes have to be conquered [Gul09].

Some approaches, such as [ODvdA+09, RMvdAR06], or the ACTIVITI and BONITA prod-
ucts, assume that a transformation at development time, or an interpretation at runtime, can
be performed in one step. There is no internal structure suggested for the entire transfor-
mation or interpretation. Instead, it is assumed that conceptual source models as input
are transformed by one monolithic step of transformation or interpretation to a deployable
output. This assumption makes no use of the notion of a problem-adequate internal struc-
ture of the transformation, which consists of querying the input models, selecting suitable
implementation building blocks that represent conceptually intended functionality, and
outputting generated artifacts or triggering runtime execution.

Traditional DSSE approaches [Gro09a, KT08] suggest that any domain-specific software
engineering project requires to design its own new domain-specific language and ac-

88



cording model editor. This is necessary, because both the conceptual requirements, and
project-specific technical realization options, have to be reflected simultaneously by the
single DSML used by those aspproaches. As a consequence, cost for domain-specific soft-
ware engineering projects always include the efforts for language and editor development,
which may make up a high fraction of the overall project spendings, given the complexity
of successful language design and the small number of experts available in this field. Users
of a DSML need to be especially trained for each new language, since they cannot neces-
sarily base their capabilities on earlier experiences. This is a relevant drawback not only
in terms of cost and efficiency, but also with respect to the group of people who are able
to utilize the domain-specific modeling language. Experts from other fields than software
development will only be able to efficiently use modeling languages they are acquainted
with. Reusing existing languages instead would not only lower development efforts and
costs to create a new language. It would also reduce the workload required for stakeholders
in conceptual modeling to learn and train the use of a new conceptual modeling language.

Most of the existing approaches are not aware of the fundamental conceptual problems,
that have to be solved when offering a software engineering method which bases on enter-
prise models or other domain-specific types of models. The abstraction gap between con-
ceptual models and technical artifacts are of fundamental ontological nature, and bridging
this gap cannot be achieved with solutions located on the technological abstraction level or
conceptual level separately. While some approaches identify this problem, none of them
succeeds in incorporating solutions for bridging the abstraction gap on the methodolog-
ical level, i. e., by shaping a proposed engineering procedure specifically with the goal
in mind, to provide methodical means for letting humans do the necessary interpretation
steps effectively and efficiently supported by methodical guidance.

While the SEEM method shares a number of fundamental concepts with approaches in
the areas of DSSE, MDA and BPM execution, it delivers several scientific contributions,
which address known problems associated with existing approaches.

Enterprise models offer a set of domain-specific language elements using a terminology
familiar to domain experts, who are people with detail knowledge about the organization
being modeled. The SEEM method allows to reuse existing enterprise modeling languages
with an adapter transformation that interfaces to external EMLs. It also introduces addi-
tional models besides the domain models, which are intended to express how conceptual
elements from enterprise models are to be associated with knowledge about implemen-
tation details. For expressing such associations, a mapping model is used, which allows
to enrich elements from conceptual models with detail information about chosen imple-
mentation strategies, without modifying any constructs of the conceptual language. The
model elements which are referenced as implementation specifications originate from im-
plementation strategy models, which carry implementation detail descriptions that can be
transformed to executable software artifacts by code generation or interpretation mecha-
nisms.

The SEEM method resolves two relevant limitations imposed on other MDSE approaches.
At first, SEEM does not use a single model transformations that directly transforms be-
tween models on different abstraction layers. Instead, in SEEM, a mapping model is ini-
tialized, together with at least one implementation strategy model instance. Elements from

89



different levels of abstraction are linked to each other through references in the mapping
model, making the relationships between conceptual elements and implementation strate-
gies explicit and traceable. In other MDSE and DSSE approaches, these relationships
are typically hidden in the execution logic of the model transformations, which transform
models from one level of abstraction to another.

Another aspect of the described approach is the explicit use of implementation strategy
models to reflect technical target architecture components. Such an explication of im-
plementation strategy concepts in separate models outside the transformation templates,
allows for reusing the implementation strategy meta-models as abstract descriptions of tar-
get architectures, and provides structuring means for separating concerns between model
transformations and code generation templates. This gives an improved overview on the
involved transformation templates and their functionality, which in turn leads to a more
efficient and less error-prone software developing process (see Req. 1), also with implica-
tions on the ability to realize security-relevant functionality safely and certifiable as part
of a reproducibly described engineering process (see Req. 7).

The problem of bridging the abstraction gap between conceptual enterprise models and
implementation descriptions is addressed by explicating an internal structure of the model
transformation from the conceptual models to executable artifacts. This way, the overall
model transformation no longer remains seen as a monolithic black box, which “mag-
ically” outputs valid implementation artifacts. This kind of monolithic transformation
would quickly become too complex to be efficiently maintained in development projects.
Also, a single transformation necessarily has to mix interpretation functionality applied to
the conceptual input models, with output functionality for generating software artifacts.
This lack of separation of duties is overcome in the SEEM method by structuring the de-
velopment process into multiple phases.

The SEEM method splits up the structure, on which the development procedure operates,
into three distinct model types. These are the input enterprise models, the implementa-
tion strategy models containing implementation strategies about how to realize specific
functionality on concrete systems, and the mapping model, which explicates relationships
between the two earlier with dedicated mapping concepts. The process of transforming
conceptual models to implementation artifacts is also divided into three separate phases.
After the adapter transformation has been run to interface the conceptual input models to
the method, the initialization transformation performs a semantic interpretation of the in-
put enterprise models to generate a populated default implementation strategy model and
corresponding default mapping model entries. Once these three models are available, and
have undergone an optional manual review, the code generation transformation creates the
corresponding software artifacts, which make up the final software system.

The method proposes a framework of implementation strategy types, covering questions
about, e. g., how to implement process-steps, how to represent resources, or how to under-
stand the notion of actors. While most of these questions have individually been addressed
in existing research about how to make conceptual models implementable (see Sect. 5.3),
the SEEM method unifies these approaches by making use of the dedicated abstraction of
the implementation strategy mapping pattern.

90



Model validity checks are interwoven into the method, to provide additional guidance for
human modelers and developers. This is done by automatically detecting locations in the
involved models, which are underspecified or ambiguous. If such a case is detected by
a validity check, the method falls back to an earlier step, and optionally points human
modelers and developers to erroneous locations in the edited models. These steps iterate
until the validity checks have passed. Including this automatic guidance of manual edit-
ing activities into the development procedure contributes to an increase in development
efficiency enabled by the SEEM method.

91



92



Part III

A Domain-Specific Method for
Model-Driven Software Engineering
with Enterprise Models

All those signs I knew what they meant
Some things you can’t invent

Some get made and some get sent
Coldplay, “Speed Of Sound” from the album “X&Y”, 2005

6 Method constituents

The artifacts that are used throughout the method are briefly described in the following to
introduce them before the procedural method description in Sect. 7.1. First, an overview
is given in Sect. 6.1 to provide an understanding of each component’s role as part of the
overall method. Starting with Sect. 6.2, the involved artifacts are closer looked at. The
following Sect. 7.1 will describe the procedures for using the introduced components.

6.1 Overview

Before the components of the method will be explained in detail, the method is described
from a coarse overview perspective to give an understanding of the main architectural
drivers that form the central principles behind the development method. With the relations
among the major building blocks of the method in mind, the upcoming detailed descrip-
tions will be easier to comprehend.

The method involves a set of modeling languages, model instances, model transformations,
and validity checks. An external enterprise modeling language (EML) and corresponding
tool is used to edit enterprise models.

6.1.1 Internal enterprise model representation language

The method uses an internal, simplified enterprise modeling language called extracted
enterprise model (EEM), into which the input enterprise models get translated before ap-
plying further steps of the method. With the help of this intermediate enterprise model
representation language, the method becomes adaptable to multiple enterprise modeling
languages through one single model transformation which is executed initially when ap-

93



plying the method. All subsequent methodical steps remain independent from the original
enterprise modeling languages used, since they exclusively operate on the internal EEM
representation. The EEM representation language is fully introduced in Sect. 6.2.1.

6.1.2 Implementation strategies and mapping model

Implementation strategies represent possible options for creating output artifacts, which
will be evaluated during the code generation step. This way, implementation strategies
offer an additional abstraction layer for capturing design decisions, and decouple the code
generation process from analyzing the conceptual input models. Implementation strategies
will be thoroughly discussed in Sect. 6.2.3.

The purpose of the mapping model is to bind conceptual elements from enterprise mod-
els, represented in their EEM form, to implementation strategy descriptions. A mapping
model consists of a list of mapping entries. Each mapping entry references one element
from the conceptual input enterprise model, and one or more implementation strategy el-
ements from an implementation strategy model. Together, both the conceptual semantics
and the technical implementation description, provide sufficient information to control the
subsequent step of automatic code generation for creating executable and deployable arti-
facts. The mapping model language will be explained in detail in Sect. 6.2.2.

6.1.3 Model transformations

Model transformations are used in different steps of the method, both for adapting the in-
put enterprise modeling languages to the method, and for generating initial instances of
the mapping model and referenced implementation strategy models. The model transfor-
mations used by the method are introduced in depth in Sect. 6.3.

6.1.4 Validity checks

Model validation rules are used to perform validity checks at specified points in the
method. They can automatically collect valuable hints for software architects and devel-
opers, to determine at which points models have to be revisited and probably be completed
or disambiguated manually. Validity checking steps as parts of the method are discussed
thoroughly in Sect. 6.4.

6.1.5 APIs

General architectural features of an enterprise information system (EIS) are encapsulated
by an application programming interface (API) which provides functions and data struc-
tures intended to be used by the generated artifacts. E. g., generated code may invoke
function on objects provided by the domain API, or it may declare constructs which in-
herit from abstract super-constructs declared by the API.

94



A domain API which has prototypically been developed to demonstrate the use of this
method is described in detail in Sect. 6.5.

6.1.6 Code generation templates

A set of code generation templates for creating source code and other implementation
artifacts is finally fed with the configured mapping model and its mapping entries refer-
encing both enterprise model elements as well as implementation strategy descriptions.
With these conceptualizations at hand, the code generation templates have enough detail
information to generate complete, executable or otherwise deployable artifacts. It is also
possible to interpret this structure to execute it at runtime, which is an equivalent imple-
mentation option not further looked at throughout the remaining elaboration of the method.

Code generation templates are responsible for transforming implementation strategy de-
scriptions, which typically reside on a level of implementation-independent, yet compu-
tation-dependent abstractions, into technical platform-dependent artifacts which rely on
concrete technology to implement the desired functionality. The code generation tem-
plates thus are relating to concrete technologies, which are available on the respective
target architectures. For each target architecture, code generation templates have to be
developed individually.

Code generation templates are further discussed in Sect. 6.3.3.

6.1.7 Tooling support

Besides describing conceptual components of a method and giving insight into the proce-
dural sequences which are performed to apply a method, a fully elaborated method also
takes care about tooling support to provide software for applying the method.

Tooling support is consulted to provide model editors for manually editing model in-
stances, to persistently store model instances throughout the application of the method,
to invoke model transformation and validity checking engines, and to host a code genera-
tion template execution engine to finally output deployable artifacts.

A prototypical environment which supports these features is presented in Sect. 12.3.

6.1.8 Overview on the methodical procedure

A methodical description of how to apply the above components in a defined procedure is
essential to the engineering method.

In its original form, the Software Engineering with Enterprise Models (SEEM) method is
open to be used with any enterprise modeling language, and with any set of target platform
architectures. Consequentially, to apply the method, it has to be tailored at two ends: the
chosen enterprise modeling language has to be adapted at the input-side of the method by
developing a suitable adapter transformation, and implementation strategy modeling lan-
guages, as well as code generation templates, have to be created for each target platform.

95



Details about these configuration procedures are described in Sect. 7.2 and Sect. 7.3. For
the purposes of the subsequent overview description it can be assumed that the method has
already been configured at both ends.

Provided the method has been prepared in this way, applying it for engineering an EIS
can be structured into seven steps, with the possibility to iterate back to previous phases at
specific points if preconditions for performing further steps are not met yet. The individual
steps are:

1. Manually create and edit enterprise models

2. Automatically transform enterprise models to an internal representation for further
processing

3. Automatically check for validity of the enterprise model representation, go back to
phase 1 if the model is not considered complete yet

4. Automatically initialize a mapping model and corresponding implementation strat-
egy models with reasonable default elements according to a semantic interpretation
of the enterprise model representation

5. Optionally, manually review the initialized mapping model and implementation
strategy models and replace defaults with more appropriate interpretations where
necessary

6. Automatically check for validity of the mapping and implementation strategy mod-
els, go back to the previous phase if these models are not complete yet

7. Automatically generate application code or configuration files

Fig. 15 shows an overview on the steps that are performed when applying the method.

The fundamental purposes of the individual steps are described in detail in Sect. 7. They
are now sketched to gain an initial understanding of the overall procedure.

Step 1: Create and edit enterprise models The first task to enable starting the engi-
neering procedure is the creation of enterprise models, which describe all relevant aspects
of the modeled organization on a conceptual, computation- and platform-independent way.
The task of creating enterprise models is usually performed by stakeholders involved in
the modeled organization, or by external analysts. Software experts should accompany
this group in order to guide the conceptual modeling process in a way that the models
express relevant information exploitable for further processing.

Sect. 7.1.1 takes a close look at this initial step of applying the method.

Step 2: Transform enterprise models to a internal representation The second step
is to invoke an adapter model-to-model transformation which transforms the enterprise

96



4. Initialize or update 
mapping model and imple-
mentation strategy models

revise if 
incomplete

1. Create and edit
enterprise models

2. Transform to 
internal representation

3. Check validity of 
internal representation

5. Manually edit 
mapping model and imple-
mentation strategy models

6. Check validity of 
mapping and implementation 

strategy models

7. Generate deployable
artifacts

revise if 
incomplete

Figure 15: Steps performed when applying the method

models created using external modeling languages and tools. As a result of this trans-
formation, the contents of the original enterprise models are expressed as a single model
artifact in an internal enterprise modeling language called EEM, which undergoes further
processing in the method.

The transformation and modeling languages involved in this step are explained in detail in
Sect. 7.1.2.

Step 3: Check validity of the enterprise model representation The enterprise models
in their internal representation can automatically be checked for validity by invoking a
model checking script. This step supports an early detection of conceptual ambiguities or
incomplete specifications before implementation decisions are taken. It allows to iterate
back to step 1, if problems with the conceptual models are found.

The validity checking step is further explained in Sect. 7.1.3.

Step 4: Initialize or update the mapping model and the implementation strategy
models The mapping model is central to the method, it combines conceptual descrip-
tions from the enterprise models with implementation strategy descriptions. When this
step is performed for the first time, it automatically initializes a new mapping model with
all entries that can automatically be derived from the enterprise model concepts. This
includes guessing possible default values for implementation strategies which match the

97



conceptual elements best. This step provides a major potential for increasing development
efficiency, since it can take away uncreative, regularly repeated work from software archi-
tects and developers. If it is performed multiple times, in subsequent iterations an update
is performed on existing mapping models which preserves existing entries.

The initialization procedure is discussed in detail in Sect. 7.1.4.

Step 5: Manually edit the mapping model and the implementation strategy models
After the automatic initialization, a phase of manual reviewing of the generated models is
accounted for in the method. While for simple design decisions the automatic initialization
procedure might have been able to select appropriate implementation strategies, complex
functionality will have to be designed by software architects and developers.

Sect. 7.1.5 elucidates the details of this step.

Step 6: Check validity of the mapping model and the implementation strategy mod-
els After the mapping model has both been automatically initialized, and optionally been
manually edited, a validity check comparable to step 2 is applied, which tests whether the
mapping model misses any specifications, or if some model elements are configured in an
ambiguous way. In case one of these tests fails, the method iterates back to the previous
step.

Details about the validity checking of the mapping model and its accompanied implemen-
tation strategy models are covered by Sect. 7.1.6.

Step 7: Generate deployable artifacts Finally, code generation techniques as they
are known from domain-specific software engineering (DSSE) approaches are applied to
the set of models, which has been made available by the previous methodical steps. They
output software artifacts to be deployed as running software. These artifacts may either be
source code, or configuration components of any kind that describe a software system as
desired.

Details on artifact generation are discussed in Sect. 7.1.7.

6.2 Models and modeling languages

When applying the method, three kinds of models are used to carry out the enterprise
model driven software engineering procedure. These three kinds are enterprise models
(EMs), a mapping model, and implementation strategy models. Other model types may be
referenced as supplementary descriptions of technical artifacts, e. g., UML class diagrams,
but these are not fundamental components of the method. One or more EMs artifacts
serve as the starting point, from which a single EM representation called EEM will be
derived as one single model artifact. The elements contained in the EEM will be referenced
from entries in a mapping model, which associate elements from implementation strategy

98



models with the referenced concept. The model types involved in this methodical setting
are discussed in detail in the following subsections.

6.2.1 Enterprise models and their internal representation

EMs (see Sect. 1.2) are made available at the start of the EIS software engineering project
by stakeholders of the modeled organization, or by external analysts who document their
view on the organization with enterprise models. When creating enterprise models, these
domain experts should be aided by software architects, who guide the use of enterprise
modeling languages in a way the knowledge contained in the models can later efficiently
be interpreted for software development. No technical details or implementation specific
design decisions are taken by the software experts at this point yet, they only give ad-
vice in how to express conceptual knowledge with the existing language means, to reduce
the need for disambiguation and detail specification activities in the subsequent software
development process.

Enterprise models can be created with any EML for which semantic tooling support is
available, for example ARCHIMATE [Lan09] using the CORPORATE MODELER SUITE
[cL], the ARIS language [Sch02b] with the ARIS TOOLSET [Sof], or the MEMO lan-
guage family [Fra12] supported by the MEMOCENTERNG application [GF10, Res]. En-
terprise models can also be created using custom domain-specific conceptual modeling
languages describing organizational circumstances and procedures. Demanding semantic
tooling support means to use model editors which internally reflect the meta-concepts of
the modeling language as elements out of which model instances are formed. The editors
thus must not be limited to offer a graphical model representation for editing, but they
need to contain knowledge about the structure of the applied modeling language, and are
expected to internally store model representations in the abstract syntax format of the mod-
eling language. When models are available in this format, they can further be processed,
e. g., by model transformations.

Enterprise models may be stored as a single technical artifact, or as a collection of interre-
lated models, which each may be formulated in a different EML for different perspectives
on an organization. For this reason, the terminology introduced with the method often
speaks of enterprise models and enterprise modeling languages in plural, while single
model artifacts may also be used.

To make use of various EMLs as conceptual source models for the engineering method,
the method gets initially configured for accessing the information contained in the model
instance artifacts of the chosen language. This is done via an adapter transformation, which
is initially run to translate the original enterprise models into the EEM format, which is
used for further processing. This way, any set of EMLs can be configured to work with
the method, as soon as a corresponding adapter transformation is provided. After the
EEM model representation is available, subsequent steps of the method can base on the
same syntactic representation for enterprise models, and those automatic processing steps,
which are subsequently performed, become reusable for different EML. Sect. 6.3.1 looks
at the adapter transformation in detail, the overall configuration process to adapt enterprise
modeling languages to the method is described in Sect. 7.2.

99



The EEM language offers a set of fundamental enterprise model element types, specifically
tailored to reflect the conceptual information required for carrying out the software engi-
neering method. The adapter transformation is responsible for creating model elements
in this language and fill their attribute values with information derived from the original
enterprise models. Models in the EEM format are not intended to be edited manually,
neither by conceptual modeling stakeholders, nor by software architects or developers.
Any changes to the conceptual models are made to the original enterprise models, and the
EEM representation is automatically re-created when a new enterprise model version is
available.

The language is specifically designed to formally provide all information required for the
subsequent engineering process. This may lead to a situation where a detail concept is
needed to be specified in the EEM model, although no corresponding language element
in the source EMLs exists. In such cases, the semi-formal nature of enterprise models
often allows to incorporate detail information via generic model elements, such as com-
ment texts or key-value-tags associated with model elements. Using these model elements
allows for specifying conceptual details, for which the original enterprise modeling lan-
guage does not provide its own semantic constructs. Comment texts or tagged values can
instead be used in the original enterprise modeling languages to encode any additional
information. The adapter transformation is in charge for parsing this information and to
propagate it to the corresponding model element in the EEM model representation. It is
part of the configuration process for adapting a specific enterprise modeling language, to
explicate the set of detail information entries and how their are included in the enterprise
models. This is supposed to be done in an end-user documentation format, to allow all
involved stakeholders, who take part in enterprise modeling activities, to understand the
semi-formal extensions and to apply them where desired.

Since the EEM representation is derived via a horizontal model transformation, which
performs a syntactic transformation from one enterprise modeling language to another,
both kinds of models reside on the same level of abstraction and only differ in structure
and labeling. Therefore, they are both referenced as “enterprise models” in the method
description, where a distinction between original enterprise models and derived extracted
representation is unnecessary.

The modeling language, in which the EEM representation is formulated, provides basic
types for all fundamental enterprise modeling concepts. This includes process modeling
concepts, elements to express organizational roles and actors with their structural inter-
relations, and resource modeling constructs with associated resource access explications.
Although it includes all necessary constructs for further proceeding with a software en-
gineering process, the language is kept as simple as possible, which reduces efforts for
adapting enterprise modeling languages, and for further processing implementations. It
only contains constructs to hold information required for the EIS engineering process.

For the same reason, the method does not specify a visual syntax for the EEM language.
This is not necessary, because the model instances are not intended to be edited by humans.
Interactive model editing and diagram visualization is only provided optionally on the
tooling level for debugging purposes, see Sect. 12.3.

100



The EEM language is defined via a meta-model formulated in the MEMO Meta-Modeling
Language (MML). This meta-modeling language is especially suited for expressing meta-
models of conceptual domain-specific languages [Fra08]. Fig. 16 shows the entire EEM
meta-model, individual components are focused subsequently.

Process
kind : [DEFAULT, MANUAL, SEMIAUTOMATIC, AUTOMATIC]

topLevel : Boolean

ProcessMember
outgoingParallel : Boolean

ingoingParallel : Boolean

Event
kind : [DEFAULT, START, STOP]

Sequence
condition : String

inProcess : Process

EMObject
id : String

value : String

comment : String

ActorIndividual ActorGroup

Actor

Resource
kind : [INFORMATION, SOFTWARE, PHYSICAL]

ResourceAccess
mode : [CREATE, READ, UPDATE, DELETE]

multiple : Boolean

performingActors : Actor

EMObjectNamed
name : String

EMTag

name : String

value : String

1..1

from

0..*outgoing

1..1

to

0..*ingoing

0..* hasMember 0..*

memberOf

0..*

0..*

0..*

0..*

0..*

0..*

1..1

usedResource

0..*

1..1

usingProcess

0..*

0..*

0..*

0..*

0..*

0..*tags1..1

Figure 16: Entire meta-model for internal enterprise model representation

The language provides a core set of enterprise model element types as they can be found in
most enterprise modeling languages. The concepts might be named differently in diverse
languages, but the EEM language provides a generalization over multiple enterprise mod-
eling languages to generally represent enterprise models in a stripped-down, simplified
structure.

The meta-concepts of the EEM language are combined in a single meta-model, forming
one modeling language which covers the relevant perspectives on an enterprise, including
the process perspective, actor perspective with responsibilities and managerial authorities,
as well as a resource perspective. Since all perspectives are integrated into one modeling

101



language, a model instance in the EEM language is a single technical artifact, which is
efficient to handle for further processing by model transformations as part of the method.

Classes EMObject, EMObjectNamed, and EMTag Elements of the EEM language
are derived from two abstract superclasses EMObject and EMObjectNamed, which
provide declarations for the attribute fields most model elements have in common. The
name EMObject generally stands for “Enterprise Model Object”. The MML declarations
of these meta-classes are depicted in Fig. 17.

Process
kind : [DEFAULT, MANUAL, SEMIAUTOMATIC, AUTOMATIC]

topLevel : Boolean

ProcessMember
outgoingParallel : Boolean

ingoingParallel : Boolean

Event
kind : [DEFAULT, START, STOP]

Sequence
condition : String

inProcess : Process

EMObject
id : String

value : String

comment : String

ActorIndividual ActorGroup

Actor

Resource
kind : [INFORMATION, SOFTWARE, PHYSICAL]

ResourceAccess
mode : [CREATE, READ, UPDATE, DELETE]

multiple : Boolean

performingActors : Actor

EMObjectNamed
name : String

EMTag

name : String

value : String

1..1

from

0..*outgoing

1..1

to

0..*ingoing

0..* hasMember 0..*

memberOf

0..*

0..*

0..*

0..*

0..*

0..*

1..1

usedResource

0..*

1..1

usingProcess

0..*

0..*

0..*

0..*

0..*

0..*tags1..1

Figure 17: Abstract superclasses defining common attributes of elements

Attribute id (String) To reference model elements after re-generation of an EEM in-
stance, an ID can be utilized which gets initialized by the adapter transformation with a
unique string value that is dependent on the original enterprise model element and will be
equal in subsequent transformations. This mechanism is currently not used by the proto-
type implementation of the adapter transformation, because the internal way of referencing
model elements from other model instances (implemented by the Eclipse Modeling Frame-
work (EMF), see Sect. 12.3) allows references to persist after re-generation of a referenced
model, as long as no substantial changes had been made to its structure.

Attribute value (String) This attribute is used depending on the concrete subclass type
for different purposes and explained together with the description of these classes, if ap-
plicable.

Attribute comment (String) The comment attribute is intended to copy any comment
or description text that is attached to original enterprise model elements, for debugging and
testing purposes if the EEM model is manually reviewed by a developer. This attribute has
no dedicated function in the method.

Attribute name (String) Most model elements will be named, this is why the name
attribute is incorporated. To still be able to declare meta-classes without names, this is
done via the separate abstract superclass EMObjectNamed.

102



Class EMTag References from class EMObject to class EMTag allow for attending
tagged values to extend the language. As common to general tagging mechanisms, tags
are composed of a name and value attribute pair, which both hold values of type string.

Actor perspective To reflect the notion of roles and actors in the EEM language, a basic
set of meta-classes to model actors and their relationships is part of the meta-model. The
corresponding excerpts of the MML meta-class diagram are shown in Fig. 18.

Process
kind : [DEFAULT, MANUAL, SEMIAUTOMATIC, AUTOMATIC]

topLevel : Boolean

ProcessMember
outgoingParallel : Boolean

ingoingParallel : Boolean

Event
kind : [DEFAULT, START, STOP]

Sequence
condition : String

inProcess : Process

EMObject
id : String

value : String

comment : String

ActorIndividual ActorGroup

Actor

Resource
kind : [INFORMATION, SOFTWARE, PHYSICAL]

ResourceAccess
mode : [CREATE, READ, UPDATE, DELETE]

multiple : Boolean

performingActors : Actor

EMObjectNamed
name : String

EMTag

name : String

value : String

1..1

from

0..*outgoing

1..1

to

0..*ingoing

0..* hasMember 0..*

memberOf

0..*

0..*

0..*

0..*

0..*

0..*

1..1

usedResource

0..*

1..1

usingProcess

0..*

0..*

0..*

0..*

0..*

0..*tags1..1

Process
kind : [DEFAULT, MANUAL, SEMIAUTOMATIC, AUTOMATIC]

topLevel : Boolean

ProcessMember
outgoingParallel : Boolean

ingoingParallel : Boolean

Event
kind : [DEFAULT, START, STOP]

Sequence
condition : String

inProcess : Process

EMObject
id : String

value : String

comment : String

ActorIndividual ActorGroup

Actor

Resource
kind : [INFORMATION, SOFTWARE, PHYSICAL]

ResourceAccess
mode : [CREATE, READ, UPDATE, DELETE]

multiple : Boolean

performingActors : Actor

EMObjectNamed
name : String

EMTag

name : String

value : String

1..1

from

0..*outgoing

1..1

to

0..*ingoing

0..* hasMember 0..*

memberOf

0..*

0..*

0..*

0..*

0..*

0..*

1..1

usedResource

0..*

1..1

usingProcess

0..*

0..*

0..*

0..*

0..*

0..*tags1..1

Process
kind : [DEFAULT, MANUAL, SEMIAUTOMATIC, AUTOMATIC]

topLevel : Boolean

ProcessMember
outgoingParallel : Boolean

ingoingParallel : Boolean

Event
kind : [DEFAULT, START, STOP]

Sequence
condition : String

inProcess : Process

EMObject
id : String

value : String

comment : String

ActorIndividual ActorGroup

Actor

Resource
kind : [INFORMATION, SOFTWARE, PHYSICAL]

ResourceAccess
mode : [CREATE, READ, UPDATE, DELETE]

multiple : Boolean

performingActors : Actor

EMObjectNamed
name : String

EMTag

name : String

value : String

1..1

from

0..*outgoing

1..1

to

0..*ingoing

0..* hasMember 0..*

memberOf

0..*

0..*

0..*

0..*

0..*

0..*

1..1

usedResource

0..*

1..1

usingProcess

0..*

0..*

0..*

0..*

0..*

0..*tags1..1

Figure 18: Meta-constructs to model the actor perspective

The abstract superclass Actor stands for any kind of actor, either a group role, an indi-
vidual role, or a concrete user. Whether an actor represents an individual or a group, is
further distinguished by the use of concrete subclasses of Actor, ActorIndividual
or ActorGroup.

Whether a modeled actor is intended to represent an organizational role or to stand for a
concrete person in the organization, is subject to further interpretation steps in the method.
This distinction can be expressed by associating suitable implementation strategies to the
conceptually modeled actors in the mapping model.

Relationship subordinate/superordinate The subordinate/superor-
dinate relationship expresses a hierarchy among actors. It uses many-to-many cardi-

103



nalities, because any actor may in principle be subordinated to multiple other actors, while
at the same time be superordinate to multiple others.

Relationship memberOf/hasMember The membership of an individual actor in an
actor group is expressed by the memberOf/hasMember relationship. This relationship
is again bidirectional and has many-to-many cardinalities, because in principle, any group
can have multiple members, and every individual can be member of multiple groups.

Relationship includes/includedBy To express a containment relationship among
groups, the includes/includedBy relationship is part of the meta-model. It allows
to specify which group is part of another. The EEM validity check (see Sect. 6.4.1) should
make sure that this transitive relationship is not populated with instances that form a circle.

Two more relationships interlink the actor perspective with the process perspective. They
express which actors are involved in performing a process.

Relationship performs/performedBy By this relationship, a link between the pro-
cess perspective and the actor perspective is expressed, which indicates which actors are
operatively involved in performing a process-step. This relationship has many-to-many
cardinalities, because any actor is potentially carrying out more than process-step, and
there may be process-steps which require more than one actor to perform them, e. g.,
real-time communication among multiple actors.

Relationship owns/ownedBy In parallel to the performs/performedBy relation-
ship, the owns/ownedBy relationship associates processes with actors, which hold man-
agerial responsibilities for the process-step (process owners). Again, this is modeled as
a many-to-many relationship, because any actor may generally hold managerial responsi-
bility for more than one process-step, while in some cases one process-step might also be
reasonably associated with more than one owning actors.

Actor types are referenced at one more point in a bidirectional relationship, as part of
the ternary relationship ResourceAccess, which combines the actor perspective, the
process perspective, and the resource perspective in describing which resources are incor-
porated in a process-step, and by whom.

Process perspective Meta-model constructs to reflect the process modeling perspective
are displayed in Fig. 19. There are four meta-classes which make up the rudimentary
set for describing processes. Class ProcessMember is the abstract superclass for both
Process elements, as active procedural steps within the process model, and Event
elements, which reflect state changes, externally triggered occurrences, etc. Processes
may themselves be described as composed out of multiple sub-processes instead of being
single atomistic process-steps.

104



Process
kind : [DEFAULT, MANUAL, SEMIAUTOMATIC, AUTOMATIC]

topLevel : Boolean

ProcessMember
outgoingParallel : Boolean

ingoingParallel : Boolean

Event
kind : [DEFAULT, START, STOP]

Sequence
condition : String

inProcess : Process

EMObject
id : String

value : String

comment : String

ActorIndividual ActorGroup

Actor

Resource
kind : [INFORMATION, SOFTWARE, PHYSICAL]

ResourceAccess
mode : [CREATE, READ, UPDATE, DELETE]

multiple : Boolean

performingActors : Actor

EMObjectNamed
name : String

EMTag

name : String

value : String

1..1

from

0..*outgoing

1..1

to

0..*ingoing

0..* hasMember 0..*

memberOf

0..*

0..*

0..*

0..*

0..*

0..*

1..1

usedResource

0..*

1..1

usingProcess

0..*

0..*

0..*

0..*

0..*

0..*tags1..1

Figure 19: Meta-constructs to model the process perspective

Relationships from/outgoing and to/ingoing All process-members are inter-
connected via Sequence elements. One single sequence element specifies a flow in
control from one process-member to another, associated via the references from and to.
There may be multiple ingoing sequence elements per process-member, as well as multiple
outgoing ones.

Attributes ProcessMember.outgoingParallel and ProcessMember.ingo-
ingParallel The modes of how to interpret the occurrence of multiple ingoing or
outgoing sequences are controlled by the boolean attributes outgoingParallel and
ingoingParallel of class ProcessMember. There are no explicit process elements
to distinguish between parallel splits or alternative decisions. Instead, this semantics is ex-
pressed via the attribute outgoingParallel to the process-member from which mul-
tiple sequences go out. In cases where outgoingParallel is set to true, multiple
outgoing sequence from a process-member are interpreted as a parallel split, while other-
wise an alternative decision is realized. Alternative decisions typically are taken based on
output information objects of the process-member from which the sequences go out.

Attribute Sequence.condition In cases where multiple outgoing sequences are
considered as alternative branches to be taken depending on a decision, the condition
under which a sequence is followed may be attached as an expression string via the at-
tribute condition. Although the actual implementation strategy for deciding which
sequence to follow is determined by ConditionImplementation elements in the
mapping model, the condition string given in the conceptual model can be used as hint
for the initialization transformation which condition implementation to choose as default.
In the conceptual model, the condition may be given as a formal condition term, or may
consist of symbol values which indicate a decision taken in the previous process-steps,
e. g., “yes”, “no” or “canceled”.

Attribute Sequence.inProcess (Process) The complex attribute inProcess of
a Sequence element points to a parent process element to which this sequence is as-
sociated. The same process-member may occur in multiple processes, because process-
members in conceptual models describe types, which can be instantiated multiple times in

105



one or multiple processes. Therefore, the sequences, which together make up the actual
description of a process structure, are bound to specific parent processes and distinguish
between multiple different process structures a process-member might occur in. Process
members never have a parent process themselves, they are embedded into a parent process
by connecting them either to the from attribute or to the to attribute of a sequence, which
is indicated to be in the parent process by referencing it with its inProcess attribute.

Usually, the reference from Sequence to Process would be expressed as a relation-
ship, not as a complex attribute, in the model. inProcess has been incorporated as a
complex attribute instead for technical reasons, because by using a complex attribute, the
other outgoing relationships of Sequence can automatically be detected as describing
the end-points of an association class, which Sequence is modeled as. To provide a
streamlined handling of the MML meta-model describing the EEM language by its corre-
sponding model editor, inProcess is declared as an attribute.

Attribute Process.kind (Enumeration) The attribute kind of meta-class Process
allows to express different characteristics of process-steps, depending on whether on the
conceptual level they are intended to be performed manually, semi-automatic with soft-
ware support, or fully automatic.

Manual steps are marked with the attribute value MANUAL, and are typically performed by
human actors without the help of the EIS, i. e., with a minimum of interaction between the
user and the software system, only to indicate which tasks are to be done and which are
completed.

Semi-automatic process-steps are marked with the attribute value SEMIAUTOMATIC and
are the main kind of process-steps which gain support through the front-end applications
of an EIS. They are typically implemented by software components that interactively mod-
erate between the user and the EIS application, or by external applications invoked by the
EIS.

Fully automatic conceptual process-steps refer to the invocation of any automatic, pro-
grammed functionality of a software system. This covers either the invocation of exist-
ing functionality in external systems, or newly developed functionality, which gets pro-
grammed as manual development work in the engineering process.

Attribute Process.topLevel (Boolean) Process elements need not considered to
be atomic, they can again be refined as process models, i. e., there are subprocesses de-
scribed by Sequence elements which have the Process element set as their inPro-
cess attribute.

Those Process elements which represent top-level processes, i. e., processes which
themselves are not contained in any other process model, can explicitly be marked setting
the topLevel attribute to true. Typically, those processes represent the granularity
of entire business process models or single process diagrams derived from the original
enterprise models.

106



Attribute Event.kind (Enumeration) The kind attribute attached to the Event type
allows to refine the semantics of events to express whether events are intended to be start
events or stop events of a process. This semantics allows to better validate the structural
embedding of events in a process, since start events can be validated to not have ingoing
sequences, while stop events are constrained to have no outgoing sequences.

Relationship waitedFor / waitedBy The reflexive bidirectional relationship wait-
edFor / waitedBy, which interlinks two instances of the Event type, allows to express
dependencies among events. If two events are joined through this relationship, the event in
waited-for direction can be interpreted as a trigger, while the event in waited-by direction
is reacting on the trigger event and becomes active whenever a trigger becomes active,
too. This mechanism can be used, e. g., to specify entry points into subprocesses, which
can be invoked or triggered from multiple other events. Other semantic interpretation of
the waitedFor/waitedBy relationship is possible by corresponding code generation
templates.

Resource perspective Resources are modeled by a meta-class named Resource. To
model details on how a resource is accessed, an association class ResourceAccess is
part of the language declaration. It connects the process perspective, the actor perspective,
and the resource perspective in a ternary relationship. Due to its function of joining mul-
tiple perspectives, the meta-class ResourceAccess forms a semantically rich model
concept from which detail information can be derived during the mapping model initial-
ization transformation.

Both classes, their interrelationships, as well as their relationships to model elements of
other perspectives, are assembled in Fig. 20.

Process
kind : [DEFAULT, MANUAL, SEMIAUTOMATIC, AUTOMATIC]

topLevel : Boolean

ProcessMember
outgoingParallel : Boolean

ingoingParallel : Boolean

Event
kind : [DEFAULT, START, STOP]

Sequence
condition : String

inProcess : Process

EMObject
id : String

value : String

comment : String

ActorIndividual ActorGroup

Actor

Resource
kind : [INFORMATION, SOFTWARE, PHYSICAL]

ResourceAccess
mode : [CREATE, READ, UPDATE, DELETE]

multiple : Boolean

performingActors : Actor

EMObjectNamed
name : String

EMTag

name : String

value : String

1..1

from

0..*outgoing

1..1

to

0..*ingoing

0..* hasMember 0..*

memberOf

0..*

0..*

0..*

0..*

0..*

0..*

1..1

usedResource

0..*

1..1

usingProcess

0..*

0..*

0..*

0..*

0..*

0..*tags1..1

Process
kind : [DEFAULT, MANUAL, SEMIAUTOMATIC, AUTOMATIC]

topLevel : Boolean

ProcessMember
outgoingParallel : Boolean

ingoingParallel : Boolean

Event
kind : [DEFAULT, START, STOP]

Sequence
condition : String

inProcess : Process

EMObject
id : String

value : String

comment : String

ActorIndividual ActorGroup

Actor

Resource
kind : [INFORMATION, SOFTWARE, PHYSICAL]

ResourceAccess
mode : [CREATE, READ, UPDATE, DELETE]

multiple : Boolean

performingActors : Actor

EMObjectNamed
name : String

EMTag

name : String

value : String

1..1

from

0..*outgoing

1..1

to

0..*ingoing

0..* hasMember 0..*

memberOf

0..*

0..*

0..*

0..*

0..*

0..*

1..1

usedResource

0..*

1..1

usingProcess

0..*

0..*

0..*

0..*

0..*

0..*tags1..1

Figure 20: Meta-constructs to model the resource perspective

Attribute Resource.kind (Enumeration) Using the kind attribute, different concep-
tual formings of resources are distinguished. The applicable values are INFORMATION,
SOFTWARE and PHYSICAL.

While the INFORMATION kind specifically denotes information objects, and with SOFT-
WARE resources existing or yet-to-be-developed external software components are de-
noted, the category of PHYSICAL resources is kept very general and meant to cover all
remaining resources. This is done according to the consideration that any generic physical

107



resource cannot be treated other than being described by a document in the EIS, because
an information system cannot do much more with physical entities. A natural language
description, in turn, is flexible enough to cover all remaining formings of resources for the
purpose of constructing the engineering method. If additional kinds seem appropriate for
specific development projects, they can be added to the EEM meta-model with low effort
by enhancing the list of available kind values in the enumeration.

Attribute ResourceAccess.mode (Enumeration) The mode attribute belonging to
the ResourceAccess type allows to express formal semantics on how a resource ac-
cess is performed. This is done using the four basic “CRUD” function descriptions of
storage access, CREATE, READ, UPDATE and DELETE, which may also be combined, if
senseful (the mode attribute has a 1..n cardinality to possibly set multiple flags in paral-
lel). Making this information available provides valuable conceptual semantics for select-
ing implementation strategies later. It is thus desirable to make this information available
in the conceptual model, and if the original enterprise modeling languages do not pro-
vide identical means of expression, apply some hinting via comment text or tagged values
to include this information on the conceptual level and make it accessible for an adapter
transformation.

Attribute ResourceAccess.multiple (Boolean) It can also be desirable to con-
ceptually express whether a resource access is targeting a single entity of the accessed
resource, or multiple ones. When accessing information resource instances, in some situa-
tions lists of multiple instances are intended to be accessed, instead of single entities, e. g.,
a product catalog consists of a list of product entries, but can conceptually be treated as a
single resource. The multiple flag allows to express this intention.

6.2.2 Mapping model

The core purpose of the mapping model in combination with referenced implementation
strategy patterns is to provide a mechanism for associating conceptual elements of EMs
with implementation-specific details. This way, the mapping model and the implementa-
tion strategy patterns together offer a methodical approach to explicate the design decisions
that go along with the ontological turn of first interpreting conceptual domain models, and
then formulating technical implementation descriptions out of them. To fulfill this pur-
pose, the mapping model language offers specific association classes, which allow for
referencing enterprise model concepts on the one hand, and implementation strategies on
the other hand.

The general pattern of such a mapping association is depicted in Fig. 21.

Implementation strategies may in some cases directly describe individual artifacts which
later make up a deployable system. However, they may also refer to cross-cuttings aspects
of the software system, and be consulted at diverse places in the code generation templates
to query detail information about aspects of the EIS.

108



The mapping model thus serves to provide references to all required detail information
about how to generate an EIS. This includes disambiguation and clarification of the enter-
prise model concepts, but also provides details on technical aspects, which are orthogonal
to the domain concepts.

configuration 
details (optional)

Mapping Association
Enterprise Model

Concept

Implementation
StrategyImplementation

StrategyImplementation
Strategy

Figure 21: Pattern of a single mapping association

A mapping model instance is the container of two basic kinds of objects. At first, ev-
ery mapping model owns a set of implementation strategy models, which are referenced
via the targetArchitectures relationship and the genericArchitecture con-
tainment relationship. Each implementation strategy model holds a list of implementation
strategy elements that can be chosen as associated implementation strategies for enterprise
model concepts in mapping entries. One special implementation strategy model is always
present in the mapping model, it holds generic implementation strategies which are as-
sumed to be applicable to any target architecture. This generic implementation strategy
model is referenced separately by the genericArchitectureModel containment
reference as a singleton instance of class GenericArchitectureModel. It is not
stored as a separate resource, but is an internal part of the mapping model.

The reference types from the mapping model to the implementation strategy models are
displayed in Fig. 22 as an excerpt of the mapping meta-model. Since there will always be
at least once concrete target architecture to output artifacts for, the targetArchitec-
tures relationship is specified with a 1..* cardinality, i. e., at least one implementation
strategy model must be referenced from a separate model file.

MappingModel

name : EString
basePackage : EString
modelURI : EString

ProcessMapping

modelURI : EString
multipleParallel : EBoolean

AbstractConditionImplementation

name : EString

ResourceMapping AbstractResourceImplementation

name : EString

AbstractMappingEntry

name : EString

ActorMapping

AbstractArchitectureModel

AbstractActorImplementation

Process
(from eem)

Actor
(from eem)

Resource
(from eem)

ProcessMember
(from eem)

AbstractProcessMemberImplementation

name : EString

AbstractActorResolverImplementation

name : EString

Sequence
(from eem)

SequenceMapping AbstractControlFlowImplementation

GenericArchitectureModel

EemModel
(from eem)

ProcessMemberMapping

AbstractImplementation

processMappings 0..*

resourceMappings 0..*

targetArchitectures 1..*

resource1

actor1 implementations 1..*

implementations 1..*

sequence1

conditionImplementation 0..1

controlFlowImplementation 1

actorResolverImplementations 1..*

process1

sequenceMappings 0..*

genericArchitecture 1

eemModel1

processMemberMappings 0..*

processMember1
implementations 0..*

implementations 0..*

actorMappings 0..*

Figure 22: Excerpt of the mapping meta-model showing the use of implementation strat-
egy models

The second central structure in the mapping model is a list of mapping entries, each one
representing an association between an element in the enterprise model on the one hand,

109



and one or more associated implementation strategies from an implementation strategy
model on the other hand. Mapping entries exist for four types of enterprise model ele-
ments, which are ProcessMemberMappings, SequenceMappings, ActorMap-
pings, and ResourceMappings. The meta-classes for building up the mapping struc-
tures for these types of elements are displayed in Fig. 23. The ProcessMapping ele-
ment in the meta-model serves as a container for ProcessMemberMapping and Se-
quenceMapping entries, and does not reference any implementation strategy by itself.

In technical terms, a mapping entry is an association class, instances of which serve as
a link between instances of the associated classes. In this case, the mapping entry as-
sociation classes represent a one-to-many relationship between instances of Process-
Member, Resource, Actor and Sequence on the one side, and instances of concrete
subclasses of AbstractProcessMemberImplementation, AbstractResour-
ceImplementation or AbstractActorImplementation, as well as implemen-
tation strategies for sequences, on the other side.

The mapping meta-model contains abstract superclasses which act as placeholders for
concrete implementation strategy types. They are referenced on the right-hand-side of
mapping entries, representing the category of implementation strategies which fits to the
type of the conceptual model element mapped on the left-hand-side.

Choosing an implementation strategy controls how a conceptual element will be techni-
cally realized in a software system. An implementation strategy description, specified by
subclasses of the abstract meta-class AbstractImplementation, can be any kind of
model element structure which can be evaluated to generate code fragments in the code
generation phase. Implementation strategies specify domain concepts of a target system
architecture in the sense of traditional domain-specific modeling (DSM) model concepts.
They control the code generation process, and, if required, can themselves consist of di-
verse sub-elements with an internal structure.

When implementation strategy elements are referenced from a mapping model, they are
first inserted into an implementation strategy model, and then referenced via a right-hand-
side association from one or more mapping model entries. The structure of implementation
strategy model instances is very simple. Implementation strategy model instances merely
serve as lists of indivdual implementation strategy elements. Technically, these models
are required to have a place where to persistently store implementation strategy model
elements. Associating implementation strategy elements from mapping entries, without
inserting them into a model first, would result in orphaned instances which could not be
written to a permanent data storage when saving the models. This is the reason, why
implementation strategy elements at least appear twice in the models, one time as children
element inside an implementation strategy model with which they are persistently stored,
and one or more times as referenced elements in mapping entries.

Most of the mapping entry meta-classes allow to associate multiple implementation strate-
gies to one conceptual element. It is up the the code generation mechanism how to interpret
these cases of multiple implementation strategies associated to one conceptual element.
E. g., the meaning of multiple process-step implementation strategies associated to one
conceptual process element could be understood as a linear sequence of implementation

110



strategies, while a multitude of actor implementation strategies associated to one concep-
tual actor could be regarded as a set of alternative implementation options.

Kinds of mapping entries Meta-classes which constitute the set of available mapping
entry types are included in the mapping meta-model as subclasses of the common ab-
stract mapping entry superclass AbstractMapping. There are four different types of
mapping entries, according to the types of conceptual elements in the domain model they
reference for mapping. These four types of mapping entries are

• ProcessMemberMapping, mapping between elements of type ProcessMem-
ber and AbstractProcessMemberImplementation

• SequenceMapping, mapping from one element of type Sequence to
the three implementation strategy types AbstractConditionImplementa-
tion, AbstractControlFlowImplementation and AbstractActor-
ResolverImplementation

• ResourceMapping, associating between Resource elements in the conceptual
models and AbstractResourceImplementation implementation strategies

• and ActorMapping, which maps from Actors to AbstractActorImple-
mentation elements

Process mapping entries An instance of ProcessMapping is created for each busi-
ness process model to be reflected. It contains ProcessMemberMapping entries and
SequenceMapping entries, which bind elements from conceptual business process
models (BPMs) to implementation strategies. While on a conceptual level, business pro-
cess modeling languages (BPMLs) typically distinguish between process-step types and
event types, for the mapping to implementation strategies this distinction can be blurred,
and it can generally be spoken about associating process-members of any kind to process-
member implementation strategies with the ProcessMemberMapping concept.

Sequences are direct connections between two process-members. They represent a pos-
sible single step in passing the control flow from one process-step to another during the
execution of a process instance. To specify detail information about how a sequence is to
be implemented, three orthogonal aspects are to be considered. These are

• the condition, under which the sequence in question is followed. Specifying con-
ditions with sequences makes sense if more than one outgoing sequence from a
process-member exists. In that case multiple outgoing sequences may represent al-
ternative options for the control flow to be followed. If no condition is specified with
a sequence, it is assumed that the sequence is always followed.

• an implementation strategy of how the passing of the control flow is realized. Mul-
tiple alternatives can be consulted depending on the underlying application archi-
tecture, which can be very contingent. Two possible modes of passing the control

111



flow are, e. g., a) to internally invoke the next process-member implementation on
the same front-end with the same user as operator, and, b) to notify a central process
control flow manager that the control flow in the current process instance is to be
passed to another front-end.

• an implementation strategy that specifies, which human user will be responsible for
carrying out the next process-member, is the third aspect of passing the control flow,
if human interaction is required at all for the next step. While the business process
models typically name actor roles which are responsible for performing process-
members, these roles need to be resolved at runtime to concrete human users, who
fulfill the modeled actor roles. The according implementation strategy can specify,
how actor roles are resolved to concrete persons.

The three aspects of specifying the implementation of passing the control flow, are for-
mally expressed by three abstract types of implementation strategies, which are speci-
fied in the meta-model in Fig. 23. These types are AbstractConditionImplemen-
tation, AbstractControlFlowImplementation, and AbstractActorRe-
solverImplementation, which are subclassed for concrete applications of the meth-
od by meta-classes that represent concrete implementation options.

A SequenceMapping element refers to instances of these three implementation strate-
gies at the same time, unlike other mapping entries, which associate one type of concep-
tual element to exactly one type of implementation strategy. While the association to a
condition implementations is optional, indicated by the 0..1-cardinality of the reference
to AbstractConditionImplementation, a concrete control flow implementation
strategy is mandatory, which is specified by the 1-cardinality of the reference to the con-
dition implementation strategy. At least one procedure to resolve actor roles to concrete
users is required to be specified. More than one concrete actor resolving strategy can
also be associated, since the reference to the AbstractConditionImplementa-
tion instances is declared with a 1..*-cardinality, which allows to chain together a set
of alternative strategies than can subsequently be applied by an application to find suitable
users.

Actor mapping entries Actors occur in conceptual enterprise models in diverse shapes.
E. g., enterprise models may use actors to denote groups of people, a specific position that
is filled by a person, or actors may refer to concrete individual persons who fill a spe-
cific identifiable role in the organization. These diverse meanings attached to the notion
of actors need to be disambiguated for the implementation of a software system. Ab-
stractActorImplementation strategies serve to declare how actor types specified
in conceptual models are represented by the software system.

For the implementation of a software system, typical techniques to implement concrete
notions of actors can, e. g., be derived from the user management technology that is part
of most operating systems. Provided appropriate concrete subclasses of AbstractAc-
torImplementation, a binding from conceptual actors to the operating system con-
cepts of user groups and user accounts can be described and be prepared for generative
implementation.

112



There is a difference between the concepts of an AbstractActorImplementation
strategy declared here, and an AbstractActorResolverImplementation strat-
egy, which is part of the implementation specification for process sequences. Abstrac-
tActorImplementation strategies statically describe how actor concepts of the en-
terprise models are technically understood, and how they can be stored and managed as ob-
jects of the software system. AbstractActorResolverImplementation strate-
gies, in contrast, describe how concrete persons are chosen, who conform to a given actor
implementation. E. g., an actor resolver implementation will select a matching single user
account that is member of a specific user group, if the actor to be resolved is specified by
an AbstractActorImplementation to be a collective actor that is implemented by
that user group.

Resource mapping entries The structure of resource mapping entries is again simple.
An instance of ResourceMapping refers to a conceptually modeled resource on the one
side, and a corresponding instance of an implementation strategy description on the other
side. Resource implementation strategies are described by meta-classes, which inherit
from the abstract superclass AbstractResourceImplementation.

Options for specifying concrete subclasses of AbstractResourceImplementa-
tion are discussed in Sect. 6.2.2.

Kinds of implementation strategies Implementation strategies, as they are referenced
by mapping model entries, are subdivided into several kinds, depending on what type of
conceptual element they are intended to be related to. Classifying the available imple-
mentation strategies is done by abstract superclasses, which group the implementation
strategies according to their intended use.

The top abstract superclasses for implementation strategies of specific kinds, declared as
sublcasses of the most general AbstractImplementation class, are

• AbstractProcessMemberImplementation

• AbstractConditionImplementation

• AbstractControlFlowImplementation

• AbstractActorResolverImplementation

• AbstractResourceImplementation

• AbstractResourceAccessImplementation

• AbstractActorImplementation

The root superclass of all implementation strategy types is AbstractImplementa-
tion. This concept is, however, too generic to specify any useful semantics, it only serves
to group the inheriting implementation strategy types on the upper most level. Concrete

113



semantics is carried by subclasses of AbstractImplementation, which categorize
implementation strategies as intended for being associated with specific types in the do-
main model.

Throughout the meta-model, some abstract meta-classes exist as leaves of the inheritance
hierarchy tree below AbstractImplementation. They are consistently named using
the prefix ArchitectureSpecific..., and locate extension points in the model un-
der which architecture-specific subclasses may be defined by separate meta-models. With
the provided tooling support of the ECORE diagram editors, this is done by importing
the extension point meta-class, or any other abstract meta-class in the inheritance hierar-
chy of implementation strategies, as shortcut elements into a new implementation strategy
language. Once the meta-class has been imported to the new implementation strategy
meta-model, implementation strategy language constructs can inherit from the imported
concept, and become compatible to be used in combination with the mapping model lan-
guage. The inheritance mechanism serves here to extend the mapping model language, and
provides an interface for newly created language elements to the mapping model concepts.

Process member implementation strategies Implementation strategy types for
process-steps are subclasses of AbstractProcessMemberImplementation,
which makes them able to take part as associated implementation strategies in a Pro-
cessMemberMapping. These strategies implement conceptual elements described in
BPMs. They may represent implementations of fully automatic process-steps, semi-
automatic steps which perform interaction with a human user, or support to guide entirely
manual working steps. According to the variety of different process-step implementations,
the AbstractProcessMemberImplementation concept is further structured by
abstract subclasses which categorize the different kinds of process-member implementa-
tions. In the first place, there is a distinction between AbstractProcessStepIm-
plementation and AbstractEventImplementation.

Although the model distinguishes between the meta-classes AbstractPro-
cessStepImplementation and AbstractEventImplementation, the
difference between the implementation of a process-step and the implementation of
an event is not as relevant as the distinction between process-steps and events on the
conceptual level. To generate deployable artifacts, both process-member types can
have impact on code for workflow execution. All specialties of distinguishing between
process-steps and events in the generated artifacts should thus be handled by the code
generation templates, to remain fully flexible in realizing any possible implementation. As
a consequence, on the level of the mapping model, the distinction between process-steps
and events is rather blurred than further refined. Both concepts can equally be treated as
process-members, and implementation strategies can be assigned interchangeably to both
of the conceptual types.

The notion of an AbstractProcessMemberImplementation is further re-
fined to reflect different fundamental kinds of process-steps. The additionally pro-
vided abstractions, which categorize process-step implementation strategy types into
those which interact with human users, and those which perform automatic pro-

114



cessing, are AbstractInteractiveProcessStepImplementation and Ab-
stractAutomaticProcessStepImplementation.

Examples for concrete process-member implementation strategies are discussed in
Sect. 9.1 and summarized in Fig. 42.

Manual process-steps implementation strategies Describing manual process-steps in
conceptual business process models does not mean that there is no software representation
on the EIS side for these steps. In fact, an EIS can support the execution of manual tasks
in a comparable way as it supports semi-automatic tasks, by providing means to admin-
istrate which manual tasks are currently to be done, and in which process contexts they
appear. There must also be an interactive component for a user to indicate when a manual
task has been completed, and, optionally, with what result it was completed. All admin-
istrative task handling, and interactive communication with the user, is thus present in the
same way as implementation strategies for semi-automatic tasks rely on them. From an
implementation perspective, the Manual implementation strategy is thus treated identical
as other interactive implementation strategies, by generating corresponding artifacts that
provide the described user interaction component on a target architecture.

The resulting generated software component that implements a Manual implementation
strategy may realize its own handling of manual tasks as part of an overall front-end API
application that consists of generated source code. In an alternative architectural setting,
the design decision may be taken to generate workflow descriptions as executable artifacts,
which are to be executed by a workflow execution engine (workflow management system
(WfMS)). In this case, existing specifications and implementing technologies exist, which
can be made use of by the generated artifacts. For workflow engines, extensions exist
which enhance the original set of Business Process Execution Language (BPEL) tasks
by a standardized collection of workflow tasks that reflect manual tasks. This extended
set of BPEL functionality is called BPEL4PEOPLE [Org10b]. Together with the WS-
HUMANTASK specification proposed in parallel, it conceptually introduces a People-
Activity task, and a set of concrete operations that implement manual working steps as
web-services [RvdA07]. WfMS, which claim to conform to the BPEL4PEOPLE and WS-
HUMANTASK standards, provide standard implementations of theses tasks, which can be
referenced when specifying or generating workflow specifications.

If the mechanism for handling manual process-steps is to be implemented as internal func-
tionality of an EIS front-end, its graphical user interface (GUI) representation can be real-
ized, e. g., by a to-do list, which informs the user about what tasks are currently requested
to be carried out manually [RDB+08]. The to-do list should offer interaction functional-
ity that lets a user mark a completed human task step as finished after the step has been
performed, to inform the EIS that this workflow step has been completed. Additionally,
the to-do list can offer links to access documentation material that instructs the user in
carrying out the task.

The concept of a to-do list can also be generalized to provide an entry point for the user to
execute other semi-manual tasks which require user interaction. See Sect. 8.2.

115



Alternative options besides implementing the entire functionality as part of an EIS front-
end GUI, or leaving the implementation to a WfMS, are possible. For example, if human
tasks are relatively rare, and requests to perform them do not require immediate response,
manual tasks management could be realized via an automatic e-mail notification system,
which sends out requests for manual tasks to perform to a user, and gets notified about task
completion by e-mail responses of the user.

Information access implementation strategies To access information is fundamental
in organizational environments, and, as a consequence, a task to be thoroughly supported
by an EIS (see Req. 6: Enable information awareness).

Accessing information is typically expressed in conceptual enterprise models by specify-
ing a relationship between a process-step and an information resource. On the conceptual
level, such a compact way of expressing that information access takes place provides the
desired degree of granularity and detail information.

For implementing a software component that provides information access to the user via a
GUI, the semantics of what it means to access information needs to be refined. To access
information can more precisely mean

• to edit one specific existing information object

• to edit multiple existing, possibly interrelated, information objects

• to pick information objects from a (possibly filtered or derived) list of information
objects and optionally edit them

• to create a new information object of a specific document-type

• or, to create many information objects of a specific document-type

In addition, for every information object edited, the process of editing can either be re-
garded as a transient process that is only partially carried out and later to be continued, or
as a final step of editing which completes an information object and makes it valid. A third
mode of operation is editing information objects that are finalized after the editing process
is finished, which means that the information object will not be available to further editing
afterwards, only for viewing or reading its contents.

Given this complex set of variations, to formalize a complete notion of information access,
additional parameters need to be specified in addition to conceptual relationships between
information access process-steps and associated information resources. It needs to be
specified

• which types of information objects are to be accessed

• which existing information object instances are to be accessed

• which existing information object instances are to be modified

116



• whether zero, one or more new object of these types are to be created during this
editing process-step

• whether the user can pick one or more existing instances of these types to edit, and,
if so, which filter should be applied to the list of existing instances of the types

• how a user interface looks like which presents the selected information objects in a
useful combination

Since many of the specific semantics of information objects and their handling in a process
context can generically be described and thus prepared for further implementation, the
abstract superclass AbstractInformationObjectAccessImplementation is
part of the mapping meta-model. It can be refined by concrete implementation strategies
to denote which kind of information object is addressed on a concrete target architecture
platform. Examples of such implementation strageties are displayed in Fig. 57.

Runtime parameters via named slots Accessing input and output resources is an im-
plicit feature of a process-member implementation strategy. For software-implemented
process-members, this means an implementation can expect some input information ob-
jects to be accessible from the current process runtime instance, and it can deliver zero
or more output information objects as the result of its processing. The way how these
input and output resources are accessed is modeled via the references resourceAc-
cessSources and resourceAccessTargets, which both reference to instances
of concrete subclasses of AbstractResourceAccessImplementation, which in
case of accessing information objects can be further refined to AbstractInforma-
tionObjectAccessImplementation.

It is also desirable to access information object content at model design time to dynam-
ically specify values of implementation strategy attributes. To do so, a mechanism can
be provided which allows to access named slots as variables in mapping model parame-
ters at model design time, and fill in the associated values at runtime. This is achieved
by the convention of enclosing information object slot names in “#”. Any fragment of
an implementation strategy parameter value that appears inside # characters is intended
to be interpreted at runtime as the name of an information object slot, the content of
which is used to substitute the #-enclosed part with the actual slot content, using a string
representation of the contained information object. E. g., to dynamically set the ad-
dress attribute of the WriteEMail implementation strategy with a value derived from
the slot customerEmail, the WriteEMail’s instance attribute address is set to
the value #customerEmail#. References to runtime values may also be combined
with constant value content, and there may be multiple references per attribute, as, e. g., a
value of Please remember #eventName# on #eventDate# for the subject
attribute. Fig. 24 shows an example of how runtime parameters are specified in a mapping
model.

If required by a concrete engineering project, the mechanism which dereferences the val-
ues enclosed in # signs may be more complex than solely referencing named slots as

117



string values. References may also consist of query language expressions, e. g., XPATH
expressions, which retrieve values from structured XML data.

6.2.3 Implementation strategy models and corresponding modeling languages

More specific implementation strategies, which are not generically provided by the
platform-independent implementation strategy elements of the mapping model language,
require to be expressed in their own modeling language. Models in these languages serve
as means for formally capturing design decisions a software architect makes when decid-
ing how to implement a concept of an enterprise model for a concrete target architecture.
Languages of this kind are called implementation strategy languages in the method, they
get specified by implementation strategy meta-models.

An implementation strategy meta-model captures relevant technology related knowledge
about the target platform for which software is to be developed. Implementation strategy
meta-models are domain-specific models. The domain in question is the technical system,
for which software is to be developed. The domain covered by implementation strategy
meta-models is thus the technical domain of the target architecture, not the conceptual
domain covered by enterprise models. For each target architecture platform the created
software is intended to run on, e. g., web-application servers, mobile devices, or local
desktop systems, an individual implementation strategy modeling language is required
to be specified by an implementation strategy meta-model, which describes the technical
features available on these platforms, including all parameters that are required to control
an automated code generation process to generate executable artifacts.

Since the elements in an implementation strategy meta-model are subclasses of abstract su-
perclasses specified in the mapping-model, elements from implementation strategy model
instances are compatible with the mapping model structure. By providing inheritable ab-
stract super-concepts, the mapping models becomes extensible by new implementation
strategy languages which provide concrete types as subclasses of the abstract concepts.

There are two ways to provide concrete subclasses for these abstract superclasses. One
option is to specify an implementation strategy modeling language, which contains lan-
guage elements that directly inherit from the top-most abstract superclasses. These are,
e. g., AbstractProcessStepImplementation, AbstractResourceImple-
mentation, or AbstractActorImplementation. Another option is to subclass
concepts from meta-model classes which are explicitly marked for being extension-points
for implementation strategy meta-models. These are the abstract classes

• ArchitectureSpecificProcessStepImplementation

• ArchitectureSpecificAutomaticProcessStepImplementation

• ArchitectureSpecificEventImplementation

• ArchitectureSpecificInformationStorage

• ArchitectureSpecificInformationObjectAccess

118



• ArchitectureSpecificSoftwareResource

• ArchitectureSpecificInformationType

• ArchitectureSpecificConditionImplementation

• ArchitectureSpecificControlFlowImplementation

• ArchitectureSpecificActorResolverImplementation

• ArchitectureSpecificActorImplementation

• ArchitectureSpecificResourceAccess

• ArchitectureSpecificSoftwareResourceAccess

• ArchitectureSpecificMenuItem

• ArchitectureSpecificAnswerOption

• ArchitectureSpecificUserInteraction

These classes are marked in the diagram of the mapping meta-model as extension points,
to indicate the concepts for which the mapping model is prepared to be extended by ad-
ditional languages. Since most of these classes are directly inheriting from their top-most
abstract superclasses, without adding their own attribute or method declarations, techni-
cally it does not make any difference whether classes in implementation strategy meta-
models inherit from the extension point classes, or directly from the top-most abstract
superclasses. However, using the extension point classes makes the purpose of extending
the predefined set of generic implementation strategy types clearer.

6.3 Model transformations

During the application of the method, three model transformations are applied which se-
quentially support software architects and developers in performing an enterprise model-
driven software engineering (EMDSE) process. The first one is an adapter transformation
(introduced in Sect. 6.3.1), which serves to translate an external enterprise model artifact
into an enterprise modeling language internally used for further processing.

The central transformation of the method is the mapping model initialization (described
in Sect. 6.3.2), which creates a mapping model that associates concepts of the enterprise
models with details about implementation strategies for creating software. The mapping
model is automatically initialized with reasonable default values, to keep the amount of
necessary manual editing activities for software architects and developers as low as possi-
ble.

A third transformation finally converts the technical descriptions given by modeled im-
plementation strategies into executable software (see Sect. 6.3.3). One way to do this is

119



to use code generation templates for outputting compilable and executable source code,
alternative approaches are interpretation mechanisms, which apply execution semantics to
models at runtime.

6.3.1 Adapter transformation for enterprise models

The first applied transformation serves to convert enterprise models, which are edited with
an external model editor, to an internal representation. It serves as an adapter transfor-
mation for plugging-in different external enterprise modeling languages and editing tools,
and make them identically usable in the subsequent steps of the method. This allows for
reusing existing model transformations and validity checking rules where possible. The
internal language to reflect enterprise models is called extracted enterprise model (EEM),
which contains a set of basic enterprise modeling concepts in one compact modeling lan-
guage. They reflect basic enterprise modeling concepts needed for further applying the
software engineering method. The adapter transformation extracts the modeled semantics
of these basic enterprise modeling concepts from the original enterprise models, and hori-
zontally translates them into the EEM representation. The transformation outputs an EEM
model file, and runs automatically without interaction.

The model which is generated as output of the adapter transformation is not intended to
be edited in the course of the method. Any changes to the enterprise models are applied
to the original models, and subsequently the adapter transformation is run to update the
internal EEM representation. An immediate execution of the adapter transformation after
changes are made to the enterprise models, while at the same time manual modifications
of the internal representation are prevented, ensures that the internal representation and the
original enterprise models are always in sync.

In simple cases, the internal representation and the external enterprise modeling language
use semantically equal concepts. Transforming these concepts resembles a copying of
the element’s name and basic attributes to an identical modeling element in the output
model. Besides this simple case, the adapter transformation has to cope with two kinds
of mismatches: at first, there may be cases in which the internal representation demands a
finer grained degree of semantics than provided by the original modeling language. One
potentially place for this is the mode attribute attached to resource access relationships,
which may hold the values CREATE, READ, UPDATE or DELETE. If an external enterprise
modeling language does not provide means to specify these modes of access as additional
semantics to resource accesses, the external enterprise model may be attached with com-
ment notes or any other means of freely attached string values, which are then evaluated by
the adapter transformation as informal hints to determine the formal EEM model content.
When the adapter transformation is created, the use of informal information encoding via
string values should carefully be documented in an end-user documentation, which de-
scribes the informal extensions to the enterprise modeling language required to make full
use of the engineering method. An example of such a natural language description docu-
ment is given in Appendix A.3.5.

The second kind of mismatch relates to the opposite case, when specific information from
the external enterprise models is to be kept accessible in the internal representation, to

120



later evaluate it in the mapping model or code generation transformations, but there are no
corresponding modeling language constructs in the internal representation language. For
these cases, the internal representation language allows to attach arbitrary key-value-pairs
as tagged values to any model element in the internal EEM representation. Via storing
of structured information in formatted strings, and later parsing these for evaluation in the
mapping model initialization and code generation transformations, any kind of information
can be encoded and passed on in the course of the method. In a very elaborate case,
the format of a comment string with additional semantics may be specified via a formal
language grammar, such as Enhanced Backus-Naur Form (EBNF) [MVM10].

An example model-to-model transformation that serves this purpose is listed in Appendix
A.3.1.

6.3.2 Mapping model initialization transformation

The central model used in the proposed software engineering method is the mapping
model. It explicates relationships between conceptual elements of the enterprise models
on the conceptual side, and implementation strategies, which describe how to implement
the corresponding concepts in a software system.

To create a mapping model, a list of mapping entries is initialized, each one referring to
an enterprise model element with its “left-hand-side” mapping relationship. Subsequently,
software architects and developers can decide which implementation strategies are suitable
to reflect this conceptual element in a software system, and set the “right-hand-side” refer-
ence of the mapping entry accordingly. Deciding which implementation strategy to choose
sometimes requires specific competencies and can only be performed by highly skilled
software architects and developers. Other mapping operations, however, may simply need
to repeatedly pick associated implementation strategies for specific kinds of conceptual el-
ements. E. g., conceptual elements describing actors and actor groups can be expected to
be repeatedly mapped to implementation strategies that realize the notion of an actor with
the implementation concept of a user account or a user group of the underlying operating
system. To create these mappings manually would impose a high workload on developers,
with time-consuming repetitive tasks that unnecessarily bind experts’ capacities.

To apply professional resources most efficiently, the proposed method accounts for an au-
tomatic initialization of the mapping model, with algorithmical steps that do not require
human skills. These algorithmic steps are defined by the mapping model initialization trans-
formation. Depending on the degree of automation strived for in a development project,
initialization transformations can be created, which reach up to initializing the entire map-
ping model automatically. This degree is desired in cases when the method is configured
to provide a 100% code generation automatic transformation procedure from enterprise
models to executable artifacts.

The mapping model initialization transformation consists of two passes. First, it iterates
over all elements in the enterprise models that are to be associated with implementation
strategies, and creates a mapping model entry with a corresponding “left-hand-side” con-
ceptual element reference for each of these elements. This automatic initialization creates

121



a skeleton mapping model without references to implementation strategies yet. The basic
structure of the mapping model now exists, and software architects and developers can
optionally edit the model by manually picking suitable implementation strategies for each
mapping entry.

As a second pass, the mapping model initialization transformation additionally guesses
default implementation strategies depending on the enterprise model elements it meets
during the initialization. This way, re-occurring design decisions can be automatized as
part of the model transformation, and do not need to be performed manually multiple
times. Since the mapping model is intended to be manually reviewed after the automatic
initialization, the proposed defaults are not required to be perfectly precise. The algorithms
that pick the defaults thus also are not required to be too complex, they may operate on
simple hints and assume later human reviewing and correction, where required.

The two passes of the mapping model initialization transformation get implemented by
two distinct model transformation descriptions. The first phase, which consists of creating
a mapping entry for each conceptual element and setting the “left-hand-side” reference,
can be performed independently from any aspired target architecture. The corresponding
model transformation definition can thus generically be reused in any development project.
The second transformation, however, needs knowledge about the target architecture for
which default implementation strategies are to be guessed. It is thus developed separately,
one transformation for each target architecture, and possibly specific to each development
project.

Since in the second phase implementation strategy instances are generated, the model el-
ements which represent these implementation strategies also need to be stored as part of
a model instance. Therefore, the mapping model initialization transformation also cre-
ates one or more implementation strategy models, as instances of implementation strategy
meta-models. As the result of the mapping model initialization transformation, there are
thus at least two new files created, which are the mapping model instance itself, and one
or more implementation strategy model instances holding those implementation strategy
model elements which are referenced from the “right-hand-side” of the mapping model.

Selecting default implementation strategies is iteratively performed for each target archi-
tecture. The order in which the target architecture types are processed determines, which
default selection will have priority. Each set of default guessing algorithms is implemented
as separate model transformations, which can be executed in configurable sequence by the
supporting tooling components (see Sect. 12.3).

In some cases, it will not be possible to determine reasonable defaults for an implemen-
tation strategy. No element will then be added to the mapping model entry, however, the
mapping entry will remain part of the mapping model with an empty reference to an im-
plementation strategy. When automatically checking the mapping model for completeness
using validity constraints (see Sect. 6.4), locations in the model with missing references
can automatically be detected, and developers can automatically be led through the re-
maining editing process of the mapping model.

When the second pass of the initialization transformation is run, it operates only on those
mapping model entries that do not reference any implementation strategy yet. The trans-

122



formation thus behaves idempotent when run multiple times, and does not modify any
previously set entry. This allows to first edit entries manually, and preserve the chosen im-
plementation strategies when the transformation is run. The initialization transformation
can also be used for updating previously existing mapping models. In case of the update
operation mode, the first steps of creating an empty mapping model and skeleton mapping
entries will only be performed for enterprise model elements which are not mapped yet.
Then, guessing default implementation strategies is performed for all mapping entries as
described above, influencing only those mapping entries which have no implementation
strategy set yet. The mapping model initialization transformation thus can be invoked in
two modes of operation, which are

• the creation of a new mapping model with accompanied implementation strategy
model instances

• or, the update of existing mapping models previously created, to incorporate yet
unmapped new elements from enterprise models.

A prototypical mapping model initialization written in the XTEND language is listed in
Appendix A.3.2. This transformation is accountable for creating the basic mapping model
structure with a mapping entry for each referenced conceptual model element, and for se-
lecting default implementation strategies. Appendices A.3.2 and A.4.2 contain listings of
example model transformations, which select architecture-specific default implementation
strategies for specific implementation targets. Example modeling workflow scripts for in-
voking the model transformations either in initialization mode, or in update mode, are also
included in these Appendices.

6.3.3 Artifact generation and alternative approaches

Once all models created throughout the method are available and properly validated, a
collection of formalized knowledge is available which contains all information required to
derive a running software system from it. However, this knowledge is presented in a shape
which is not executable by computers yet. Knowledge in the models first has to be mapped
to a machine interpretable form.

One way to perform this mapping is to generate source code that realizes the modeled
implementation strategies. To do so, a mechanism has to be specified which outputs source
code that reflects the information in the models, e. g., by conditionally including fragments
of source code depending on model content, or by reacting on model element attribute
values and filling in variable parts of the source code with values derived from them.

The description of such a code generation procedure serves as an interface between non-
executable model semantics, and technical execution semantics for a computer system. It
offers a defined procedure, which deterministically maps model content to source code.
The description of such a transformation procedure is provided by a set of code genera-
tion templates, or, more general artifact generation templates, because most languages for
creating such generation procedures work with a template-based approach. In Appendices
A.3.3 and A.4.3, examples of code generation templates are shown.

123



An alternative to performing an explicit artifact generation step is to interpret the mod-
els at runtime, using a mechanism that provides the implementations of model-described
concepts through an interpreter program. Reading in the models, and acting according
to their contents, is thus another way of defining technical execution semantics formally.
This option to interpret models for execution, however, will not be examined in further de-
tail. The method proposed here suggests to apply artifact generation techniques, because
generation procedures at development time more cleanly separate between the language
for describing the generation template, and the language in which the resulting software
system will be created. This makes the development of code generation templates eas-
ier compared to writing a model interpreter. Other fundamental differences between code
generation and interpretation, e. g., the ability to modify results of the transformation by
editing the generated source code, will also not be discussed here, because making man-
ual changes to generated source code artifacts is not considered a methodical step in the
method elaborated here. There are approaches dealing with this question, which could be
applied orthogonally [Gul09].

The approaches of generating artifacts at development time, and performing an interpre-
tation at run time, can also be mixed. In this case, an interpretable model format is first
generated from the models created throughout the methodical procedure, which is then
suitable for run time interpretation by an interpreter engine.

Besides generating computer executable artifacts, code generation procedures can also be
utilized to generate any other kind of artifact, computer or human readable. Among these
are configuration files, which can be created depending on information given in the models,
and also human-readable documentation, provided the model contents are enriched with
documentation fragments. The variety of possible artifacts to generate, suggests to rather
operate with the term “artifact generation” rather than “code generation”, which both are
applied synonymously throughout this work.

6.4 Validity checks

The proposed method guides software architects and developers through a sequence of
model creation steps and model editing activities. While manual creation and editing
of models is a creative and highly knowledge-dependent activity, automatic support for
manual editing activities can be provided to some extent. At least, it can automatically be
determined if a model needs further basic modeling activities, and, even more supportive
for a developer, where in the model editing activities still are required. This allows for
providing automatic wizards that lead developers through the sequence of editing affected
locations in the models, until all formally determinable lacks are resolved.

To consider a model as “valid” means to consider all of its elements being complete and
consistent. If all individual parts of the model recursively are considered valid, the model
is considered valid in total. This assumes a notion of a model being a set of model elements
which recursively are composed of elements again, which can safely be assumed, since the

124



underlying architectural concepts which express models on the meta-meta level are built
following this assumption.

For a single model element to be valid means that all of its attribute values and relationships
carry reasonable values to allow the method to further continue without errors. Especially,
an automatic check for validity in this sense should make sure that subsequent model
transformations and code generation transformations can operate on the model without
errors.

An automatic check for validity can be implemented by summing up the required con-
ditions, under which each model element is considered complete and consistent. There
are two options for formally specifying these conditions. The first option is to attach
meta-information to attributes and relationships in the modeling language, which state
whether values are required or optional, or to specify numerical cardinalities about the
minimum and maximum number of elements referenced by a relationship instance. Most
meta-modeling languages contain such features. Since most notions of validity are simply
related to the question whether a value is available or not, the required meta-attribute, or a
non-zero minimum cardinality, respectively, are simple but powerful techniques to specify
the notion of validity of model elements.

The second option for specifying model validity is performed via traditional model-
checking using explicitly formulated constraints written in a constraint language. Using
checks for required attributes and non-zero cardinalities on relationships on the one hand,
and explicit constraint-checking on the other hand, the models involved can to a useful
extent be automatically checked for validity. Tooling support for the method provides au-
tomatic wizards, which indicate yet incomplete model elements and guide developers to
the corresponding model-locations. The locations where to edit the model and fix a failed
check can easily be determined due to the local character of the condition statements typi-
cally used in model checking languages.

The proposed method uses validity checks at two points in the methodical procedure. Va-
lidity checks are applied to the enterprise model representation in EEM format, and to
the mapping model and its accompanied implementation strategy models. Both kinds of
validity checks are discussed in the following subsections.

6.4.1 Validity check for enterprise models

After input enterprise models have been transformed to an EEM representation (see
Sect. 6.3.1), a validity check is applied to the EEM model to make sure it can be pro-
cessed by the subsequent operations of the method. Doing such a check at an early stage
of the method increases the efficiency of applying the method, because it can avoid typ-
ical sources of errors in later stages of the method beforehand. E. g., the validity check
can make sure that every conceptually modeled process-step is referencing at least one
performing actor. Demanding this constellation from the conceptual models, allows for
an unambiguous resolving of actor implementation strategies which describe the technical
details about actor authentication and authorization.

125



In cases when incompleteness or ambiguities are detected, a list of problems is generated
by the validity checking step, which gives a description on each detected problem in the
enterprise model. The output of the validity check mechanism can be presented to mod-
elers in terms of a to-do list which describes points of remaining work in the enterprise
models. In a further elaboration of the method, it could also be the basis for a development
supporting wizard, which guides software architects and developers step by step through
yet unresolved issues about the enterprise model.

When issues are detected, modifications to resolve them are carried out on the original
enterprise models. Afterwards, the adapter transformation is run again, and the enterprise
model validity check is carried out on the internal representation of the enterprise models
another time. This cycle is repeated until no more issues are detected by the enterprise
model validity check. Unlike in typical cases with validity checks, not the checked model
needs to be manually revisited in case the checking failed, but the original enterprise model
is edited.

The internal enterprise model representation is not intended to be edited at all, it is re-
generated after every version change of the enterprise models. Depending on the underly-
ing tooling support, this conversion may happen transparently in the background whenever
changes to the original enterprise models have been made. To locate the source elements
of the detected issues, the proposed procedure could be enhanced by a tracing mechanism
that is added to the adapter transformation. Such a tracing would keep a list of mappings
from the original enterprise model elements to model elements in the internal represen-
tation, and would allow for implementing tooling support which automatically displays
locations of detected validity issues in the original enterprise models.

Appendix A.3.1 shows a prototypical implementation of validity checks for EEM in-
stances.

6.4.2 Validity check for the mapping model

The notion of validity of a mapping model is defined with regard to the operative semantics
of a later code generation process or interpretation during runtime. A mapping model is
considered “valid” in the sense of the method, if it contains enough and unambiguous in-
formation to perform code generation or interpretation. For the mapping model, this notion
of validity is composed of two aspects. At first, a mapping model must contain mapping
entries for all enterprise model elements that need to be associated to architecture-specific
concepts. For example, every actor concept in the enterprise model must be associated to a
corresponding actor implementation strategy, because otherwise all process-steps in which
the actor is referenced remain underspecified for the implementation. The left-hand-side
of the mapping will in most cases be set during the initialization transformation, except for
optional mapping entries that are added manually. The right-hand-side of the mapping, i.
e., the reference to an implementatiosn strategy, may, however, be left blank by the initial-
ization transformation in cases when no reasonable default implementation strategy can
be determined. It will thus regularly happen that a mapping model is not complete after
initialization. Software architects and developers will revisit the default values chosen and
will fill in the missing architectural concepts.

126



As a second aspect, each of the referenced implementation strategy descriptions from the
referenced implementation strategy models has its own validity constraints, which specif-
ically determine if code generation or interpretation of the described strategy can success-
fully be performed. During the check of the mapping model, these conditions are also
validated, to form the second set of conditions which must hold true to be able to speak of
a valid mapping model.

The implementation strategy model’s attributes and child elements are intended to cover
the semantic delta between what can automatically be derived from the conceptual enter-
prise models, and what is required to generate fully running software components. The
attributes and child elements of implementation strategy descriptions can thus be expected
to go into fine-grained detail. A high degree of interdependencies among detailed code
generation configuration can be expected at this low abstraction level of concrete technol-
ogy.

After the initialization transformation has been run, an implementation strategy model
is usually still incomplete, unless the method has been configured to perform a 100%
code generation transformation. The initialization transformation may create appropriate
implementation strategy elements, but in some cases it may not be possible to initialize
all attributes and further detail configuration with automatically derived values. For this
reason, it is normal to assume that the mapping model validity check will initially fail
when applied to a freshly initialized mapping model and its corresponding implementation
strategy models.

In the course of the method, validity checks of the mapping model are applied to guide
software architects to those model elements which need further specification and manual
refinement. E. g., mapping entries for which no default implementation strategy could be
determined automatically, will be detected by the validity check as being incomplete. The
locations of these elements in the model are reported to the developers, which can possibly
be done providing tooling support with a wizard to jump to error locations in the models.

Manual refinement of the auto-initialized mapping model, followed by a validity check to
generate a list of the remaining to-dos, is iteratively repeated until the mapping model is
considered valid, and the validity check passes without errors.

As part of the prototypical implementation of the method, example validity checks for
mapping model instances are shown in Appendix A.3.2.

6.5 Domain APIs for EIS

If software is built on the source code level, by generating compilable or interpretable
artifacts in a programming language, an additional point where to specify characteristics
of the resulting system is a domain API. A domain API encapsulates conceptual features of
the application, and technological specifics of its implementation on different platforms.
In parallel to application characteristics modeled by implementation strategy models at
development time, a domain API represents concepts of the application used at runtime,

127



and it provides implementation building blocks as technological abstractions to be used by
the components of the software system.

Domain APIs typically consist of multiple technological abstraction layers, ranging from
a level of abstract interfaces that generically model the shape of the system to be devel-
oped, down to concrete implementation components that offer entry points for invoking
implementation-specific functionality from generated artifacts. When developing software
for multiple target architecture platforms simultaneously, for each target architecture, a
concrete API is created to interface to the underlying platform. Abstract API specifica-
tions can potentially be reused on any target architecture. In parts they must be reused, in
order to gain a set of common semantic concepts which allow multiple EIS components to
interact in a distributed environment.

The design of a domain API can only take place after contingencies related to fundamen-
tal design decisions about a software system’s architecture have been resolved. These
design decisions determine, e. g., to build the system using generated source code in a pro-
gramming language, or to use a centralized distributed client-server architecture. These
decisions need to be taken with traditional software engineering expertise prior to concep-
tualizing a domain API. The domain API in turn reflects some of these decisions in terms
of software artifacts.

Depending on the implementation technology used, the API may, e. g., be presented as a
set of abstract and concrete classes in an object-oriented programming language, or may
alternatively consist of a collection of services that are internally exposed to components
of the EIS.

An example abstract domain API is shown in Sect. 8.3.

128



M
ap

p
in

g
M

o
d

el

n
am

e 
: E

St
ri

n
g

b
as

eP
ac

ka
g

e 
: E

St
ri

n
g

m
o

d
el

U
R

I :
 E

St
ri

n
g

P
ro

ce
ss

M
ap

p
in

g

m
o

d
el

U
R

I :
 E

St
ri

n
g

m
u

lt
ip

le
P

ar
al

le
l :

 E
B

o
o

le
an

A
bs
tr
ac
tC
on

di
ti
on

Im
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

R
e
so

u
rc

e
M

a
p

p
in

g
A
b
st
ra
ct
R
e
so
u
rc
e
Im

p
le
m
e
n
ta
ti
o
n

n
a
m

e
 :

 E
S

tr
in

g

A
bs
tr
ac
tM

ap
pi
ng

En
tr
y

n
am

e 
: E

St
ri

n
g

A
ct

o
rM

ap
p

in
g

A
bs
tr
ac
tA

rc
hi
te
ct
ur
eM

od
el

A
bs
tr
ac
tA

ct
or
Im

pl
em

en
ta
ti
on

P
ro

ce
ss

(f
ro

m
 e

em
)

A
ct
or

(f
ro

m
 e

em
)

R
es

o
u

rc
e

(f
ro

m
 e

em
)

P
ro
ce
ss
M
em

be
r

(f
ro

m
 e

em
)

A
bs
tr
ac
tP
ro
ce
ss
M
em

be
rI
m
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

A
bs
tr
ac
tA

ct
or
R
es
ol
ve
rI
m
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

Se
q

u
en

ce
(f

ro
m

 e
em

)
Se

q
u

en
ce

M
ap

p
in

g
A
bs
tr
ac
tC
on

tr
ol
Fl
ow

Im
pl
em

en
ta
ti
on

G
en

er
ic

A
rc

h
it

ec
tu

re
M

o
d

el

Ee
m

M
o

d
el

(f
ro

m
 e

em
)

P
ro

ce
ss

M
em

b
er

M
ap

p
in

g

A
bs
tr
ac
tI
m
pl
em

en
ta
ti
on

p
ro

ce
ss

M
ap

p
in

g
s

0
..*

re
so

u
rc

eM
ap

p
in

g
s

0
..*

ta
rg

et
A

rc
h

it
ec

tu
re

s
1

..*

re
so

u
rc

e
1

ac
to

r
1

im
p

le
m

en
ta

ti
o

n
s

1
..*

im
p

le
m

en
ta

ti
o

n
s

1
..*

se
q

u
en

ce
1

co
n

d
it

io
n

Im
p

le
m

en
ta

ti
o

n
0

..1

co
n

tr
o

lF
lo

w
Im

p
le

m
en

ta
ti

o
n

1

ac
to

rR
es

o
lv

er
Im

p
le

m
en

ta
ti

o
n

s
1

..*

p
ro

ce
ss

1

se
q

u
en

ce
M

ap
p

in
g

s
0

..*

g
en

er
ic

A
rc

h
it

ec
tu

re
1

ee
m

M
o

d
el

1

p
ro

ce
ss

M
em

b
er

M
ap

p
in

g
s

0
..*

p
ro

ce
ss

M
em

b
er

1
im

p
le

m
en

ta
ti

o
n

s
0

..*

im
p

le
m

en
ta

ti
o

n
s

0
..*

ac
to

rM
ap

p
in

g
s

0
..*

Fi
gu

re
23

:E
nt

ir
e

m
et

a-
m

od
el

sp
ec

if
yi

ng
th

e
co

re
co

nc
ep

ts
of

th
e

m
ap

pi
ng

m
od

el
la

ng
ua

ge

129



Fi
gu

re
24

:I
m

pl
em

en
ta

tio
n

st
ra

te
gy

sp
ec

ifi
ca

tio
n

in
a

m
ap

pi
ng

m
od

el
ed

ito
r,

us
in

g
dy

na
m

ic
pa

ra
m

et
er

re
so

lv
in

g

130



7 Applying the method

The overall methodical procedure contains of two optional configuration processes, which
may have to be carried out once before the method is applied for software development.

In the first place, the method requires to be configured to use the EMLs with which the
original enterprise models, that serve as input artifacts to the method, have been formu-
lated. To perform this step of adaptation means to provide a suitable EM-to-EEM trans-
formation which is first executed at the beginning of the procedure. Sect. 6.3.1 covers this
in detail.

The overall methodical procedure, including the two optional configuration steps, is ex-
pressed as a business process model in Fig. 25. The individual parts of this comprehensive
model are closer looked at in the following sections.

7.1 Applying the method to enterprise information system development

The fundamental steps of the method have already been sketched in an overview in
Sect. 6.1.

Considering the method has already been configured for the desired EMs as input artifacts,
and for target architectures as desired execution platforms to generate output artifacts for,
the process of applying the method for EIS development consists of seven major steps, de-
picted from an overview perspective in Fig. 15, and in more detail by the business process
model in Fig. 26.

To further describe the procedure, the overall process will be focused in detail excerpts in
the following.

7.1.1 Step 1: Create and edit enterprise models

The origin of activities in a chain of engineering steps is the creation and maintenance of
enterprise models. They are created and maintained by the involved stakeholders, i. e.,
members or employees of the organization or external analysts (see Sect. 1.2). For the
purposes of software engineering, these stakeholders are accompanied by software experts
who will help to guide conceptual modeling decisions in a way they become efficient for
further processing the enterprise models in a tool-supported software engineering proce-
dure.

Conventions that stem from the engineering process may determine the choice of appro-
priate enterprise model element types or attributes to express organizational knowledge in
the enterprise models. E. g., using an Information resource type in an enterprise model to
express the notion of an electronic document rather than a generic resource type, helps to
efficiently apply hints for generating default implementation strategies for corresponding
information objects and type descriptions.

131



It is important to notice that software experts, while they participate in enterprise modeling
activities, do not append technical detail descriptions to enterprise models, nor do they
elaborate architecture or implementation specific design decisions at this point yet. They
guide the conceptual modeling decisions of how to express knowledge about organizations
with enterprise models in a way that automatic model transformations, which are applied
later, can use specific hints to suggest reasonable default implementation strategies for the
modeled circumstances.

In the course of the method description here, enterprise modeling appears as a single initial
step in the software engineering process. Of course, activities of enterprise modeling can
be regarded in much more depth as complex negotiation processes among multiple stake-
holders about complex abstractions. Enterprise modeling also is a continuous iterative
activity for some organizations, reflecting continuous changes in dynamic environments.
The elaborated method meets this concern by differentiating between an initial prepara-
tion of the model instances used throughout the method, and an update procedure, which
operates on existing models, and weaves in changes that have been made to the underlying
enterprise models. For the purpose of describing the SEEM method, enterprise modeling
activities are regarded as the initial methodical step for collecting the requirements for
both the initialization, and the update procedures, of models used throughout the method.

Fig. 27 shows the excerpt of the overall process model which describes this initial step.

Decision to invest in 
development

Decide which enterprise
modeling language to use

< Software Architect >

Decide which target
architecture to use

< Software Architect >

Enterprise modeling
language is chosen

Target architecture
is chosen

Has the method been conÞgured to
use the enterprise modeling language?

< Software Architect >

Has the method been conÞgured to
use the target architecture?

< Software Architect >

Need to conÞgure the method
for the enterprise modeilng language

Need to conÞgure the method
for the target architecture

ConÞgure the method to use
the enterprise modeling language

ConÞgure the method
to use the target architecture

Method is conÞgured for the
enterprise modeling language

Method is conÞgured
for the target architecture

Describe organization
with enterprise models

< Business Analyst >

Enterprise models
are available

Adapt models to 
internal representation

Internal representation
is available

Run completeness checks  on
internal representation

Enterprise models
are not complete

Enterprise models
are complete

Update original
enterprise models

< Business Analyst >

New version of
enterprise models available

Generate or update mapping model according to
interpretation ot the enterprise models

Initial or updated mapping
model is available

Edit mapping model according to human
interpretation of the enterprise models

Mapping model and architecture
model have been manually edited

Is iteration step required to
reÞne enterprise models?

< Business Analyst >
Models need
reÞnements

Models are
complete

Run code generation and
artifact creation

Executable artifacts available

Run completeness check
on mapping model

Mapping model
is not complete

Mapping model
is complete

Enterprise models

Enterprise models
internal representation

Transformation to initialize
or update the mapping model

Hints to express additional semantics 
in original enterprise models

Hints at choosing default
implementation strategies

Mapping model

Code generation templates

Transformation from original enterprise
models to internal representation

Completeness rules for
enterprise models

Validity checking rules

Figure 27: Create and edit enterprise models

7.1.2 Step 2: Transform enterprise models to a internal representation

The second step is automatically performed by a model-to-model transformation, which of
course has to be developed by software engineers during the configuration of the method
(see Sect. 7.3). To be able to adapt the method to multiple enterprise modeling languages,
the contents of the enterprise models is transformed to an internal representation of those
conceptual elements that will be used in the subsequent software engineering process. For
this purpose, the method uses an internal enterprise modeling language called extracted
enterprise model (EEM), which does not have a graphical representation, but represents all
elements from the enterprise models which will undergo further processing by the method.

The EEM representation of the enterprise model is automatically derived as an injective
projection from the original enterprise models to an EEM instance. Manual editing of
the EEM instance is not intended by the method, model editors for the EEM language
(see Sect. 12.3) are only provided for analysis purposes. Any changes that are intended
to be made to the enterprise models are made in the original enterprise models using the

132



available external model editors. To gain a consistent intermediate EEM representation
after changes to the enterprise models have been made, the automatic transformation is
re-run again.

7.1.3 Step 3: Check validity of the enterprise model representation

At this point in the method, it makes sense to check whether the provided information
in the enterprise models is complete and unambiguous to be able to continue with the
engineering procedure. A validity check is applied to detect missing information in the
enterprise models, or to enforce disambiguations on the conceptual level.

The result of such a validity check is, in cases where defects are found, a to-do list re-
ferring to conceptual model elements, which still need modeling activities to be clarified.
Such a to-do list provides an efficient mechanism to guide enterprise modelers through
a sequence of modeling steps to solve explicitly located problems, which is a valuable
automatic mechanism to foster efficiency in human enterprise modeling activities.

Since changes to the enterprise models are always carried out on the original enterprise
models, not on the derived EEM instance, the transformation in step 2 has to be re-run
after a revised version of the enterprise models is available. The method then carries on
after this step.

The cycle of editing conceptual models, transforming them, and checking them, is mod-
eled in the business process and displayed in an excerpt in Fig. 28.

7.1.4 Step 4: Initialize or update the mapping model and the implementation
strategy models

For each enterprise model element, it is now to be decided if and how this concept is to be
interpreted in terms of its relevance for implementing an EIS. This is done by filling the
initially blank mapping model with mapping entries, each of which combines a concep-
tual enterprise model element with one or more corresponding implementation strategy
descriptions.

Mapping entries either reference generic implementation strategies, which are included
as language elements in the mapping model language, or they point to target architecture
specific implementation strategies, which are defined as language elements in a separate
implementation strategy meta-model.

In principle, all entries in a mapping model could be created and edited manually by soft-
ware architects and developers. However, such an approach would require an excessive
effort to manually decide for each implementation-relevant element in the enterprise mod-
els, even for regularly repeated constellations, which implementation strategy to apply,
and with which detailed configuration this strategy is to be parametrized.

In order to meet the methodical requirement for efficient guidance (see Req. 1), the method
accounts for an automatic initialization of mapping model entries. When initializing a new
mapping model, an automatic model-to-model transformation creates a new mapping en-

133



try for each of the enterprise model concepts that are considered to be relevant for the
EIS implementation. Besides purely initializing the mapping structure, the initialization
transformation also guesses reasonable default implementation strategies from the enter-
prise model content. When a default implementation strategy is determined, its describing
model element is added to the implementation strategy model of the target architecture
platform the strategy is envisioned for, or to a generic implementation strategy model ref-
erenced by the mapping model which holds those implementation strategy descriptions
that are not bound to any specific target architecture platform. Once an implementation
strategy description is registered as a child element of an implementation strategy model,
it can be referenced from any mapping entry in the mapping model.

Guessing of default values is done based on a set of configurable hints which allow to inter-
pret the enterprise model semantics in a semi-formal way, e. g., based on matching name
fragments against lists of keywords, which indicate to pick specific pre-configured imple-
mentation strategies. The proper use of these hints is one responsibility taken by software
experts who take part in the conceptual modeling activities of the enterprise models.

The model-to-model transformation that is initially applied to create a new mapping model
from scratch can also be executed in an update mode, which will only create mapping
model entries which do not exist yet, and will only suggest default implementation strate-
gies if no strategy is yet set in the mapping entry. This way, previously created defaults and
manually edited implementation strategies remain untouched and stay associated with the
existing enterprise model concepts which are unchanged. This update mechanism cannot
ensure that previously picked implementation strategies remain consistent to the concep-
tual elements if the semantics of the conceptual elements is changed, e. g., by changing
attribute values or by changing relationships the element has to other conceptual elements.
However, the update mechanism does not overwrite previously edited entries, and thus
allows for safe manual adaptation of the changes in a subsequent manual editing steps.

7.1.5 Step 5: Manually edit the mapping model and the implementation strategy
models

Since by the nature of algorithmic procedures, automatic programs can never fully reliably
grasp the meaning of conceptual semantics, the default values assigned in step 4 can only
be general suggestions based on hints. Automatic initialization and update of the mapping
model can speed up development by preparing the required structure of the mapping model
and by reducing development work of specifying implementation strategies for conceptual
elements which could be derived automatically instead.

The automatic initialization can be expected to pick the right implementation strategy
only in clean-room situations with enterprise models that have specifically been created
according to the default hints, or in cases where the initialization or update transformation
is specifically adapted as part of the development process, to shift development efforts
from manual refinement work of the mapping to refinement of the automatic detection of
reasonable defaults. Depending on the size of the enterprise models, and accordingly the
mapping models, the decision to adapt the initialization or update transformation to project

134



specific or organization specific needs may be a justified approach to increase development
efficiency.

Manual editing activities are performed with the help of dedicated model editors for the
mapping and architectures models, see Sect. 12.3. Fig. 29 shows the process of manually
editing the mapping model in detail.

7.1.6 Step 6: Check validity of the mapping model and the implementation strat-
egy models

After the mapping model has been initialized and manually revised, an automatic validity
check can ensure that the mapping model is complete to undergo the next methodical steps.
Therefore, the method comprises a validity checking step before implementation-specific
artifacts are generated by code generation templates that take the mapping model and its
referenced implementation strategy models as input.

The validity check contributes to an overall methodical engineering procedure which pro-
vides automatic means for guiding the working processes of software architects and devel-
opers (see Req. 1). It can automatically detect places in the models where manual work is
necessarily required. If the validity check on the mapping model fails, the method iterates
back to step 5, and software architects and developers are asked to fix the according model
elements. Subsequently, the validity check is applied again, and the cycle is repeated as
long as incomplete or inconsistent elements in the mapping model are found.

The cycle of initializing or updating a mapping model, manually revising it, and auto-
matically checking its validity, is part of the overall methodical procedure displayed as an
excerpt in Fig. 30.

7.1.7 Step 7: Generate deployable artifacts

Finally, when all of the above mentioned models are available, enough information is
gathered which allows to generate software artifacts from the model using code generation
techniques. These are usually realized using specialized template languages, this is why
the term “code generation templates” is often used synonymously.

The resulting output of applying code generation techniques may be source code in a pro-
gramming language, but also other artifacts which reside on the implementation level, e. g.,
configuration files to shape the behavior of existing software components, or deployable
software descriptions on a higher level of abstraction, which are intended to be interpreted
by corresponding execution components, e. g. workflow models interpreted by workflow
management systems (WfMSs).

Helper artifacts may also be derived from the models, e. g., installation scripts to aid the
deployment of generated software on the desired target platforms. With these mecha-
nisms at hand, a code generation procedure becomes realizable which can automatically
derive fully deployable artifacts from the models and does not require manual program-
ming any more. Of course, in order to realize such a 100% code generation, sophisticated
efforts have to be spent on the development of the code generation templates. The code

135



generation templates become the place where architectural design decisions and technical
knowledge are manifested. Besides the design of implementation strategy meta-models,
the code generation templates belong to the central methodical artifacts on which manual
development work is applied throughout the enterprise model driven software engineering
procedure.

The code generation step as an excerpt of the last step in the method’s business process
model is shown in Fig. 31.

Decision to invest in 
development

Decide which enterprise
modeling language to use

< Software Architect >

Decide which target
architecture to use

< Software Architect >

Enterprise modeling
language is chosen

Target architecture
is chosen

Has the method been conÞgured to
use the enterprise modeling language?

< Software Architect >

Has the method been conÞgured to
use the target architecture?

< Software Architect >

Need to conÞgure the method
for the enterprise modeilng language

Need to conÞgure the method
for the target architecture

ConÞgure the method to use
the enterprise modeling language

ConÞgure the method
to use the target architecture

Method is conÞgured for the
enterprise modeling language

Method is conÞgured
for the target architecture

Describe organization
with enterprise models

< Business Analyst >

Enterprise models
are available

Adapt models to 
internal representation

Internal representation
is available

Run completeness checks  on
internal representation

Enterprise models
are not complete

Enterprise models
are complete

Update original
enterprise models

< Business Analyst >

New version of
enterprise models available

Generate or update mapping model according to
interpretation ot the enterprise models

Initial or updated mapping
model is available

Edit mapping model according to human
interpretation of the enterprise models

Mapping model and architecture
model have been manually edited

Is iteration step required to
reÞne enterprise models?

< Business Analyst >
Models need
reÞnements

Models are
complete

Run code generation and
artifact creation

Executable artifacts available

Run completeness check
on mapping model

Mapping model
is not complete

Mapping model
is complete

Enterprise models

Enterprise models
internal representation

Transformation to initialize
or update the mapping model

Hints to express additional semantics 
in original enterprise models

Hints at choosing default
implementation strategies

Mapping model

Code generation templates

Transformation from original enterprise
models to internal representation

Completeness rules for
enterprise models

Validity checking rules

Figure 31: Generate deployable artifacts

7.2 Configuring the method to be used with a specific enterprise modeling language

To apply the engineering method, an EML has first to be chosen as the source modeling
language to formulate conceptual, domain-specific EMs. Once the language has been
selected, it has to be adapted to be used with the method. This section describes how this
adaptation is performed.

The process-steps indicating the decision to use an EML, if it is not adapted to the method
yet, are represented in Fig. 32. In case this decision is taken, the methodical steps shown
in Fig. 33 are performed to realize the adaptation of an external EML to the method. Such
EMLs can be any conceptual languages that provide a combination of process modeling
languages and static organization structure languages, to be able to describe processes, ac-
tors and resources in an organization. These requirements may be met by a comprehensive
set of EMLs [Fra02, SN00], or by an enhanced business process modeling language, e. g.,
BPML enriched by suitable hints to express basic actor and resource types.

Sect. 11.1 gives an example of adapting the MEMO EML to the method. The example
model-to-model transformation, which serves as adapter transformation for the MEMO
language family, is contained in Appendix A.3.1.

The individual steps for adapting enterprise modeling languages, as modeled in Fig. 33,
are

1. Identify language concepts equivalent in EML and EEM

2. Implement transformation rules for equivalent language concepts

3. Formulate hints to express other EEM concepts in EML

4. Implement transformation rules for other language concepts via hints

136



These four steps are executed sequentially one after another. Two document artifacts come
into play when adapting an EML, which are the

• Transformation rules from original enterprise models to extracted representation,
and, optionally,

• Hints about how to express additional semantics in the original enterprise models

The transformation rules are given as an interpretable script, e. g., in the XTEND language
(see Sect. 12.5.3). Hints for expressing additional semantics in the enterprise models are
written in human language, because they are targeted to human modelers, who are respon-
sible for creating and maintaining the enterprise models.

The four methodical steps for adapting an enterprise modeling language are described in
the following.

7.2.1 Step 1: Identify language concepts equivalent in EML and EEM

The EEM language provides a core set of semantic concepts, which can be found in several
different enterprise modeling languages with a comparable meaning, although probably
differently named. The first step to take when adapting a new EML to the method, is to
identify those concepts in the source EML, which can be mapped to elements of the EEM
language by a merely syntactical renaming, with possibly minor semantic transformations.

As a result of this step, a software architect or a qualified modeling language engineer
documents, which concepts in both languages can directly be mapped to each other without
further semantic interpretation required.

7.2.2 Step 2: Implement transformation rules for equivalent language concepts

Since identifying of common mappable concepts in two different languages is consid-
ered an architectural task, which requires specific expertise on language engineering and
meta-modeling for language definition, the proposed method separates between identify-
ing mappable concepts, which is done in step 1, and implementing an executable model
transformation that creates an EEM instance from source EML models.

This implementation performed in the second step is done by creating a suitable model-
to-model transformation by qualified software developers, e. g., using the XTEND (see
Sect. 12.5.3) language.

7.2.3 Step 3: Formulate hints to express other EEM concepts in EML

Assuming not all elements required to transform a complete EEM model can be mapped
directly from concepts of the source EML, some concepts and entries remain, which can-
not be directly derived by a syntactic transformation. To cover these cases, a software
architect or modeling language designer specifies informal hints how to incorporate the

137



required semantics in the source enterprise modeling language, using generic language
constructs for attaching comments, such as, e. g., tagged values or description fields. A
tagged value is a generic model element which carries a named value of a generic data
type, typically a string value. A set of multiple tags attached to an element can be under-
stood as a list of key-value-entries associated to this model element. With this modeling
construct, any kind of additional information can informally be encoded as tagged val-
ues and be attached to model elements. In turn, the information can be evaluated by model
transformation scripts and code generation templates, to guide the automatic interpretation
process. The tagging approach is not a theoretically clean approach, especially because
formal semantic integrity of string-encoded information cannot easily be verified, and the
development process becomes more prone to errors. However, to include additional infor-
mation into models, using tagged values may be the mechanism of choice when efforts for
adapting a language on the meta-model layer are unreasonably high. In extreme cases, sep-
arate textual grammars can be specified [ANT, Ecld], which describe a syntax of encoded
strings that can formally be checked.

An example of attaching a hint to a source EML is incorporating the notion of a read/write
access-mode to a resource access. While the EEM requires such an access mode to be
specified along with ResourceAccess elements, some source EMLs may not provide
built-in means for specifying the notion of a resource access mode. In these languages,
e. g., a resource access is simply modeled as a plain relationship between a process-step
and a resource, without further formal attributes. If the source EML, however, provides a
generic comment field on the relationship element, or if a tagged value to carry a mode-
string can be applied to the expressed resource access, the hint to document would ask the
conceptual modelers to apply a comment string “read” or “write” (and possibly additional
modes) via these modeling constructs. The adapter transformation, in turn, will be ex-
tended by software developers to parse the string value in the comment field, or the tagged
value, and detect the mode in this way, if appropriate string values “read” or “write” are
found.

The hints are documented by the responsible software architect for two target audiences:
the first one being the group of stakeholders responsible for creating and maintaining
EMLs, who are in an ideal case supported by qualified conceptual modeling experts, and
the second group being the software developers, who implement the use of the hints as part
of the adapter transformation that creates the EEM instance in the following methodical
step. Since end-users of the EML are targeted by the documentation, writing the docu-
mentation has to be carried out with special care regarding the use of a clear and simple
language.

An example natural language documentation about how to apply hints in conceptual enter-
prise modeling languages is given in Sect. A.3.5. Fig. 34 shows an excerpt of an enterprise
modeling environment, in which a Multi-Perspective Enterprise Modeling (MEMO) en-
terprise model is edited enriched with additional semantics using the hint text CREATE in
a description field of a resource access model element.

138



Figure 34: Enriching an enterprise model with additional semantics via a comment text
hint

One case of insufficient matching between EML and EEM needs not to be taken care of,
which is the mapping of those concepts available in the source EML, but not represented in
the EEM language. Since the EEM language has intentionally been designed to include the
set of concepts which is required to express model instances used for further proceeding
with a software engineering process, any additional conceptual information is not required
to be specified for the software development method, and can thus remain untransformed
by the adaptation transformation.

7.2.4 Step 4: Implement transformation rules for other language concepts via hints

After the set of hints to complete the expressiveness of the source EML has been es-
tablished, the model-to-model transformation initially implemented in the second step is
enhanced to interpret the hints in the source models, and to project the derived information
onto elements of the generated EEM instance. To do so, the transformation script may
either use simple parsing techniques, such as comparing string-values, or searching for
occurrences of specific patterns in strings. The transformation may also consult syntax
parsers to read complex object structures encoded in strings, e. g., using XTEXT [Ecld] or
ANTLR [ANT]. Provided the source model specifies all required concepts and hints, the
resulting model output of the adapter transformation is a complete EEM model, which is
ready to be successfully validated by the EEM validity check.

139



To show how to adapt the method to use a specific enterprise modeling language and its
corresponding model editing tools, a prototypical adaptation of the modeling languages
of the MEMO enterprise modeling method, and its tooling environment MEMOCEN-
TERNG is demonstrated in Sect. 11.1.

7.3 Configuring the method for specific target architectures

For every new target architecture, a new implementation strategy meta-model is created,
which captures the specifics of this architecture by declaring modeling language elements,
instances of which describe concrete implementation approaches to realize the specific
functionality of the architecture. A new implementation strategy model is created by
initializing an empty meta-model, importing the abstract superclass AbstractArchi-
tectureModel from the mapping meta-model, and creating a new meta-class named
according to the target architecture as subclass of AbstractArchitectureModel.
This class becomes the root model class for the new implementation strategy model, and
inherits all required containment relationships to reference instances of implementation
strategies of diverse kinds as child elements of the root model class. This way, imple-
mentation strategy model instances become containers for model element instances that
describe specific implementation strategies for that architecture. These elements can in
turn be imported into mapping model instances, and be referenced as associated imple-
mentation strategies from the mapping entries of the mapping model.

The detail processes of configuring the method to generate artifacts for a specific target
architecture platform are shown in Fig. 35 and Fig. 36.

Fig. 35 denotes the methodical steps to decide to use a yet unadapted target architecture
with the method. The procedure of developing the required method artifacts to allow the
creation of deployable software components by the method is the detail process displayed
in Fig. 36.

The procedure consists of 12 sequential steps, which are to:

1. Conceptualize a target architecture API

2. Implement the target architecture API

3. Meta-model architecture-specific process-step implementation strategy types

4. Meta-model architecture-specific event implementation strategy types

5. Meta-model architecture-specific actor implementation strategy types

6. Meta-model architecture-specific resource implementation strategy types

7. Meta-model architecture-specific information object implementation strategy types

8. Meta-model architecture-specific sequence implementation strategy types

9. Conceptualize hints at choosing default implementation strategies

140



10. Implement hints at choosing default implementation strategies

11. Implement code generation templates for generic implementation strategies

12. Implement code generation templates for architecture-specific implementation
strategies

Steps 3 to 8 are performed by creating an implementation strategy meta-model that de-
clares the available types of implementation strategies, which are specific to the target
architecture in focus.

Several document artifacts are referenced, created or modified while the adaptation proce-
dure is carried out. These artifacts are:

• The target architecture API description

• The implementation strategy meta-model representing characteristics of the target
architecture

• A set of hints at choosing default implementation strategies

• A model-to-model transformation to initialize or update the mapping model

• Validity checking rules to test for completeness and consistency among architecture-
specific elements in model instances

• Artifact generation templates to project architecture-specific model elements onto
deployable artifacts

The 12 methodical steps to prepare the method for a specific target architecture are laid out
in detail in the upcoming subsections. Along with their explanation, the use of document
artifacts during these steps is further explained.

Examples for applying the upcoming steps are presented in Sections 10 and 11.2, where
implementation strategy models for a BPEL-driven service oriented architecture (SOA)
platform and a Java Server Pages (JSP) web-application platform, respectively, are devel-
oped. The resulting example implementation strategy meta-models are shown in Figures
62 and 68.

7.3.1 Step 1: Conceptualize a target architecture API

A target architecture API describes the characteristics of EIS software components in a
distributed environment on a software technical level. It both provides abstract concepts,
which are applicable on multiple concrete platforms with different technologies, and offers
executable functionality per platform, which implements building blocks of the application
functionality and is intended to be invoked by the generated artifacts of the EIS.

Some parts of a target architecture API are mandatory, they can optionally be integrated
if specific functionality of a platform is intended to be used by the EIS. When this

141



architecture-specific functionality is offered by an API, corresponding implementation
strategy types are typically modeled in the implementation strategy meta-model in steps
3–9. These implementation strategy types are instantiated as parts of a mapping model, by
which they are associated to conceptual elements of the EMs. The code generation tem-
plates responsible for generating artifacts on the target architecture in question, will react
on these implementation strategies where specified, and will generate code that invokes
the corresponding specific target architecture API functionality.

The result of modeling an API is a set of object-oriented models, e. g., in the Unified
Modeling Language (UML) [BJR99], declaring technical building blocks and their inter-
face operations, on top of which artifacts forming an EIS front-end will be generated.
Conceptualizing an API is considered to be the typical task of a software architect, and
is separated from the actual implementation of API functionality in the description of the
method, covered by the next step.

7.3.2 Step 2: Implement the target architecture API

After the target architecture API has been conceptualized, concrete functionality offered
by the interface operations needs to be implemented. The implementation is built using the
available technology of the target architecture platform, including available programming
languages and underlying system API functionality of the platform.

This methodical step resembles classical manual software development work, which can
be performed as a part of the overall methodical procedure, e. g., using traditional object-
oriented software development approaches [BD10, Sch02a].

7.3.3 Step 3: Meta-model architecture-specific process-step implementation strat-
egy types

Some target architectures may allow for offering specific functionality to be used for sup-
porting the execution of business processes with an EIS. This may refer to technical fea-
tures, which are available on specific target architectures only, and thus have to be con-
ceptualized separately as possible process-member implementation strategies in a separate
target architecture specific implementation strategy meta-model.

New process-step implementation strategies are specified in an implementation strat-
egy meta-model by importing the abstract superclass ArchitectureSpecific-
ProcessStepImplementation, which is declared in the mapping model, into the
implementation strategy meta-model, and subclassing it with the desired implementa-
tion strategy. This way, new process-step implementation strategies are declared com-
patible to the mapping model’s mapping mechanism, and can be referenced from in-
stances of class ProcessMemberMapping in the list of mapping entries in a map-
ping model. Alternatively, classes describing process-step implementation strategy types
can also be inherited from any other abstract class in the meta-model, which is a sub-
class of AbstractProcessMemberImplementation, from the general abstract
superclasses AbstractProcessStepImplementation, or from the upper-most

142



AbstractProcessMemberImplementation. The use of the Architecture-
SpecificProcessStepImplementation extension point is encouraged, if an im-
plementation strategy is to be explicitly marked as architecture-specific.

An example for an architecture-specific process-step implementation strategy is, e. g.,
functionality to invoke a phone-call as implementation of a conceptual process-step “call
customer by phone”. Such functionality can be realized on mobile phone devices, or
specifically equipped hardware platforms which integrate a telephone or a headset for
telephony. The corresponding implementation strategy meta-model would incorporate a
process-member implementation strategy InitiatePhoneCall, the use of which as
associated implementation strategy to a conceptual process-step “call customer by phone”
would cause the code generation template to generate code which invokes the correspond-
ing platform-specific functionality.

To keep the method efficiently applicable and support architects and developers in choos-
ing reasonable implementation strategies, the mapping model initialization transformation
(see Sect. 6.3.2) should be enhanced by target architecture-specific parts, which, in the
case of the example, could detect name fragments including “phone”, and would pick an
instance of the InitiatePhoneCall strategy as default implementation strategy asso-
ciated to the conceptual model element via a mapping entry in the mapping model.

7.3.4 Step 4: Meta-model architecture-specific event implementation strategy types

In the same way as architecture-specific implementation strategies for conceptual process-
steps have been declared in the previous step, architecture-specific implementation strate-
gies intended to describe concrete options to implement events in conceptual business pro-
cess models can be specified. The mapping meta-model does not enforce a distinction be-
tween implementation strategies for process-steps and those for events, both are subsumed
under the AbstractProcessMemberImplementation concept (see Sect. 6.2.2).
However, for the methodical procedure of adapting target architectures, it makes sense
to distinguish the steps of identifying process-step implementation strategies and event
implementation strategies, since in order to establish a mapping from the conceptual mod-
els, the clear, orthogonal distinction between process-steps and events has of course to
be kept to provide senseful operational semantics. As a consequence, the implementa-
tion strategy types that are designed in this step can be declared as subclasses under the
mapping meta-model’s class ArchitectureSpecificEventImplementation,
which marks the implementation strategies explicitly as realizations of event interpreta-
tions for a specific platform. As with implementation strategy types for process-steps,
implementation strategy types for events can be created in the implementation strategy
meta-model, after the abstract superclass ArchitectureSpecificEventImple-
mentation has been imported from the mapping meta-model to inherit from it.

There are two opposite directions in which the notion of an event can be underfed with
an operationalized interpretation by software functionality. The first idea about what an
“event” means as part of a software system is an external state change or occurrence of
input. In this sense, a conceptually modeled event represents some external occurrence
which is input into the software system as a trigger to cause further process execution.

143



Such understanding of an event implementation is suitable to be associated to conceptu-
ally modeled start-events, or to events in BPMs which cause process execution to wait
until an external trigger is received. As a concrete example, such a notion of an event
implementation would be given by an implementation strategy, which maps the choice of
a drop-down menu item of an EIS front-end’s main menu bar to a conceptual start-event
of a process type, to cause a new instance of that process type to be spawned when a
drop-down menu entry is chosen. Front-end platforms that provide concepts such as main
menu bars and drop-down menus can offer such implementation strategies for events, oth-
ers do not make use of these metaphors, but may provide other sorts of possible event
implementation options.

A second interpretation of how an event, as it occurs in a conceptual BPM, is to be un-
derstood in terms of software functionality, is focused on events that occur during the
execution of a process, not as start or end events. Most of these events are not modeled
to block the control flow until an external state change is detected, but they passively rep-
resent individual stages reached during process instance execution. This understanding of
event implementations does not regard an event to react on external state changes, but sees
an event itself as the representation of an internal state change of the process control flow.
Reasonable implementations of such events, if they are not ignored at all from the imple-
mentation perspective, behave like process-step implementations and perform some action
in response to the control flow having reached the event, e. g., a logging operation. This
is the reason why the mapping model does not enforce an orthogonal distinction between
process-step implementation strategies, and event implementation strategies, because with
this notion of event implementations in mind, implementation strategies for process-steps
and implementation strategies for events become interchangeable.

7.3.5 Step 5: Meta-model architecture-specific actor implementation strategy types

The notion of actors is relevant to an EIS, because it is the very purpose of an EIS to sup-
port organizational cooperation among different actors. A proper reflection of actors in the
organizational models, and in turn appropriate reflection by supporting software systems,
is relevant, because the use of actors, and the conceptual differentiation between roles,
groups, individuals, positions, committees, etc., are central design principles for organi-
zation management and forming [Daf09, HC06]. This can even have legal consequences
for an organization, because there are steps of actions in an organization, which are only
allowed to be carried out by specific actors, e. g., accessing security relevant or secret
information, handling hazardous substances, or establishing legal contracts on behalf of
the organization. Depending on the sensibility of tasks carried out in an organization, the
importance of modeling “what” is done in an organization by use of BPMs, is superim-
posed by the relevance of “who” performs specific actions. Means for interpreting the
operational semantics of actor types are thus carefully to be adapted to the method, with
the context of project related requirements and target architectural specifics in mind.

A core understanding of what kinds of software technical information objects are to be
used to represent actors in a software system, is described by the general user management
model that underlies most operating systems. A general set of implementation strategies

144



for actors, which allows for platform-independent specification of implementation strate-
gies, can thus be offered by strategy types that map the conceptual actor types of groups,
roles, positions, and individuals, to the technical objects of user-groups and user-accounts.
In any distributed system environment, the interacting participants will need to be identi-
fied by something comparable to a user-account, and may optionally be categorized into
groups, so this is a notion that is generic enough to be said to be architecture-independent.
This general understanding is modeled as architecture-independent implementation strate-
gies in Sect. 9.2.

Depending on project-specific needs and technical capabilities of an adapted target ar-
chitecture, further notions of actors can be introduced. As an example, a typical web-
application provides means to handle public anonymous actors accessing the application
via the internet. Technically, this kind of actor is unique to web-applications exposed
to the public internet. It requires specific handling for re-identifying users over time,
e. g., by anonymous session IDs. An architecture-specific actor implementation strategy
to be included in a web-application implementation strategy meta-model could thus be
represented, e. g., by a class WebSessionUser, which inherits from the abstract super-
class ArchitectureSpecificActorImplementation that has previously been
imported into the implementation strategy meta-model to provide a link to the mapping
meta-model. See Fig. 68.

If more fine-grained adaptations with respect to choosing a concrete individual actor from
actors of the introduced type are required, the code generation templates that react on Ab-
stractActorResolverImplementations as part of sequence implementations in
processes, additionally need to be made aware of how to handle the new actor implemen-
tation strategy type (see Sect. 9.1.5). Actor mapping entries in mapping models allow to
associate more than one actor implementation strategy to a conceptual actor element. This
is possible to enable actor resolver implementation strategies to optionally pick from mul-
tiple alternative realization options when choosing a concrete individual for a given actor
type.

7.3.6 Step 6: Meta-model architecture-specific resource implementation strategy
types

Two fundamentally different kinds of resources are typically distinguished on the concep-
tual EML level, which are on the one hand physical resources representing material objects
and machinery, and on the other hand intangible information and software resources.

The implementation of detail representations of physical resources is by nature indepen-
dent from any target architecture of a software system, because physical resources cannot
directly be represented in a software system, only indirectly via information objects that
provide descriptions of the physical entities in question. However, to allow a project to
specify detail informations about physical resources, the mapping meta-model contains the
abstract meta-class AbstractPhysicalResourceImplementation, which can
be imported in implementation strategy meta-models and be extended to provide custom
physical resource descriptions in a meta-class inheriting from it.

145



For the realm of information and software resources, it can be expected that a concrete
target architecture offers a variety of available technological components that may po-
tentially be of interest to act as implementations for software resource concepts. The
capabilities of these components can be modeled as meta-classes that inherit from the im-
ported abstract meta-class ArchitectureSpecificSoftwareResource, which is
one of the explicitly marked extension points of the mapping meta-model. Architecture-
specific software resources may, e. g., be local applications or system services, for which
implementation strategy descriptions with more specific semantics than the generic Ex-
ternalApplication meta-class are to be provided. The ExternalApplication
implementation strategy is suggested as one architecture-independent software resource
implementation strategy example, together with WebService and CustomResource,
in Sect. 9.3. Another alternative to use architecture-specific software resource implemen-
tation strategy is to explicate specific API functionality existing on the target platform,
either made available by the domain API that underlies the generated component on this
architecture and has been developed in the course of the project, or by exposing system
API functionality which is specifically available on this architecture.

Information resources are considered of special relevance in the context of EISs, their
implementation is covered separately in the following section.

7.3.7 Step 7: Meta-model architecture-specific information resource implementa-
tion strategy types

Information resources are considered to be important kinds of resources from the perspec-
tive of an EIS. This is because information objects play constitutive parts in organiza-
tional forming and behavior, and by nature are entities handled by software systems. The
mapping from conceptual information resources onto implementation concepts can be per-
formed in a fine-grained, technology-driven manner, if different concrete technologies for
describing data types and data storage mechanisms are available. Unlike the reflection of
physical resources in an EIS, which in principle is limited to keeping a description about
the physical resource as an electronic document, several technological options exist to de-
scribe information object types, to operate on information object instances, and to store
information objects persistently, if desired.

Specifying implementation strategies for information resources means to provide disam-
biguation mechanisms for a number of detail questions which are intentionally not expli-
cated on the conceptual enterprise modeling level. These concrete details refer in the first
place to a distinction between the notion of information object types and information ob-
ject instances, which on the conceptual level sometimes are used interchangeably, unaware
of the difference on the implementation level (see Sect. 3.6). Implementation strategies
also need to explicate whether individual information object entities are modeled by con-
ceptual information resources, or if a set of multiple information objects is denoted. Since
on the conceptual level storing and retrieving of information objects is often only assumed
implicitly, i. e., not modeled at all, a technical realization also must take care of persistence
mechanisms, a distinction of temporary and persistent information objects, and strategies
for identifying information objects across multiple storage and retrieve steps.

146



The mapping meta-model declares the class ResourceMapping, which associates a
conceptually specified resource to one or more resource implementation strategies. To im-
plement a fully specified information resource, including information object type handling,
information object instance processing, and persistent storage mechanisms, typically two
kinds of implementation strategies are associated to a conceptually specified information
resource. These are, at first, an implementation strategy that reflects a technology to spec-
ify a type system, and, secondly, a strategy describing mechanisms to store and retrieve
information objects persistently.

Type system implementation Most concrete architectures provide mature technologies
for describing and instantiating data types. Because of this, it can be expected that adapting
architecture-specific information resource implementation strategies will be a common
operation during the preparation for new development projects.

Type systems are mechanisms, which allow to describe data types using a schema of some
kind, and optionally provide means to validate data instances with respect to conformance
to a given schema. Examples are the XML Schema Definition (XSD) language, ECORE
meta-models in the EMF environment, diverse type systems provided by middleware stan-
dards, e. g., the Common Objects Request Broker Architecture (CORBA), or type specifi-
cation systems from programming languages. Implementation strategy descriptions are in-
corporated into the implementation strategy meta-model, by subclassing the imported ab-
stract meta-class ArchitectureSpecificInformationType with meta-classes
describing a specific type system technology.

To further explain the method, the XSD type specification mechanism will be used as an
example technology to formulate implementation strategies for. This is done as part of a
set of generic example implementation strategies, because it can be assumed that imple-
mentations of the XSD language and corresponding XML instance parsers are available
for almost any front-end architecture platform. See Sect. 9.3.1 for the example implemen-
tation strategies.

Persistence implementation A full implementation of an information resource addi-
tionally requires information about how to store and retrieve persistent information ob-
jects, and how to identify them over multiple process instances over time. To give this
information, architecture-specific ways of storing information objects can be specified
via subclasses of the abstract meta-class ArchitectureSpecificInformation-
Storage. If a specific information storage mechanism is restricted to be used with some
information types only, the architecture-specific validity checking conditions for the map-
ping model should be adapted at this point, too, to test whether only valid combinations
of information type implementation strategies, and information storage implementation
strategies, have been used as references in a ResourceMapping entry.

Example implementation strategies for reading content from a uniform resource identifier
(URI), writing and reading files on the front-end’s file-system, or using an application-
specific central storage service, are specified for further explanation of the method in
Sect. 9.3.1.

147



7.3.8 Step 8: Meta-model architecture-specific sequence implementation strategy
types

As part of the implementation of sequence concepts, i. e., direct steps of control flow pass-
ing from one process-member to another, three aspects of an implementation are specified
in a SequenceMapping entry. These are the strategy of how to cause the control flow
to be passed, the strategy to pick a new instance of an actor if a group of actors, or a role or
a position not yet involved in the process, is requested to carry out the next process-step,
and, as a third component, an optional condition to determine if the sequence step is to be
carried out or not.

For all three implementation strategy types, abstract superclasses exist in the map-
ping meta-model as dedicated extension points, from which architecture-specific im-
plementation strategy descriptions can be inherited as meta-classes in an implemen-
tation strategy meta-model. The abstract superclasses to interface to are Archi-
tectureSpecificControlFlowImplementation, ArchitectureSpeci-
ficActorResolverImplementation and ArchitectureSpecificCondi-
tionImplementation.

If the developed EIS consists of workflow descriptions executed by a WfMS, the corre-
sponding control flow, actor resolver and condition implementation strategies may be spec-
ified to reflect concepts realized by the workflow description language and its execution
mechanisms. This may apply, e. g., when workflow descriptions using the BPEL4PEOPLE
or WS-HUMANTASK concepts are part of the implementation.

The semantics of concrete control flow implementations, implemented actor resolver
strategies, and kinds of conditions, can be influenced by various kinds of factors deter-
mined both by domain-specific requirements, and technological constraints on the chosen
target architecture platform. They can hardly be estimated from the abstract method en-
gineering perspective. To provide further explanation of the method, generic example
implementation strategies for sequence implementations are proposed in Sect. 9.1.5.

7.3.9 Step 9: Conceptualize hints at choosing default implementation strategies

The set of transformation rules and functions that are used to create an initial mapping
model and implementation strategy model can be split into two categories: one part of
the transformation functionality is independent from the target architecture and is used to
query information from the enterprise model representation. This is the case with functions
that are used to determine properties from the enterprise models, e. g., resolve responsible
actors of a process-step, retrieve information about involved resources, etc. The second
part uses the results of these query functions to output a default mapping model and default
implementation strategy models, the latter being dependent on platform-specific target
architectures. Consequently, when adapting the method to a new target architecture, the
architecture-dependent part of the transformation rules is to be implemented with respect
to the specifics of the implementation strategy language, or multiple languages, created in
the first step.

148



One general kind of hint required to be available with every choice of an architecture-
specific implementation strategy is to detect whether a concept is intended to be repre-
sented on that architecture at all. This can be detected in the integrating business process
perspective, by determining for every process-member on which target architecture it will
be implemented. Depending on the semantics of the process-member concept, there may
also be multiple target architectures for one process-member, e. g., when collaborative
process-steps or human-machine interactions are modeled.

Hints for determining on which target architecture a process-step is intended to be used can
be derived from multiple information sources in the model. A first option is to base the de-
fault detection algorithm on actor types. If instances of architecture-specific actor types are
declared as performing actors, e. g., WebSessionUser, the default detection algorithm
may assume that the intended target architecture is the corresponding web-application ar-
chitecture. Another option is to base the detection on resources attached to process-steps.
If, e. g., a web-browser software resource is attached to a process-step, the default de-
tection algorithm may be written to treat this as a mark to implement the process-step as
part of a web-application front-end. Other means of using hints, e. g., based on model
element names containing keyword-phrases, or comment-strings and tagged values (see
Sect. 7.2.3), may alternatively be consulted.

The result of the architectural considerations taken in this step is a set of hints, which list
means for expressing knowledge in conceptual enterprise models, for which no explicit
conceptual language elements exist. Asking responsible stakeholders, who maintain the
conceptual enterprise models, to model according to these hints, on the one hand limits
their degrees of freedom to informally express knowledge in a way of their choice. On
the other hand, rules about applying hints may offer guidelines of how to express specific
constellations unambiguously, which even may increase efficiency of modeling, and foster
intersubjective understanding of the model based on these supplementary guidelines.

Since both the conceptually modeling stakeholders, and the software developers, who for-
mulate model transformation rules based on the elaborated hints, are the target audience
of the elaborated hints in this step, the documentation of the design decisions taken in this
step should be formulated in a way suitable both for end-users and technical experts.

7.3.10 Step 10: Implement hints at choosing default implementation strategies

This step of implementing the previously conceptualized set of hints is separately declared
in the method, to indicate that at this point the work can be delegated from a software
architect to an expert in applying model transformation languages. Technically, the imple-
mentation of algorithms for choosing architecture-specific default implementation strate-
gies boils down to create model transformation rules that are additionally applied when the
mapping model initialization or update transformation is run, together with a function to
detect whether this target architecture is to be used to implement the conceptual element at
all. This detection function and the model transformation rules are implemented according
to the hint documentation, which has been created during the previous design step.

149



The procedure to detect default implementation strategies is to iterate over all existing
mapping entries in the mapping model, grouped by the types of conceptual elements they
reference on the conceptual side. In cases where no corresponding implementation strat-
egy is mapped to a conceptual elements in a mapping entries, i. e., the implementa-
tions reference of the mapping entry instance is empty, a potential candidate for detect-
ing a default implementation is found. Depending on the type of the conceptual element,
i. e., separated for process-steps, events, actors, resources, etc., different hints can now be
applied per target architecture to determine a reasonable default implementation strategy.
If such a strategy can be detected, the model transformation causes an implementation
strategy instance element to be created in the implementation strategy model instance,
and sets a reference in the mapping entry’s implementations reference to this newly
created implementation strategy element instance. All changes are made in-place to the
model instances during the transformation execution, afterwards the models are saved to
their persistent storage.

The algorithm as described above is idempotent, i. e., running it a second time on the pre-
viously modified models does not cause any further changes. This is the case, because
detection of default strategies is only performed for mapping entries with a yet empty
implementations reference. In cases where a default strategy can be derived, it is
added as member to the implementations reference, which in turn blocks detection
of defaults on any further possible runs of the algorithm. In the other cases, where no de-
fault can be derived, the implementations reference remains empty, and also remains
empty after further runs of the same detection algorithm. For empty implementations
references, suitable implementation strategies have to be chosen manually, otherwise the
subsequent validity check on the mapping model will not pass.

In addition to be stable towards applying the algorithm multiple times, and preserving
previously created automatic associations to default strategies, the default detection mech-
anism is also stable towards manual entries that have been made in the mapping model,
because no mapping entries, which already contain any strategy associated, are touched
by the transformation. This way, later changes in the source EMs, with subsequent runs of
the default detection mechanism to automatically update the mapping model, will preserve
existing design decisions already explicated in the model, and will in some cases be able
to automatically adapt changes in the conceptual models to corresponding mapping model
entries. In those cases where changes in the conceptual models cannot automatically be
adapted, the mechanism ensures that no damage is done to the existing mapping model,
and allows to manually feed in the required adaptations.

Examples of architecture-specific parts of model transformations are provided in Appen-
dices A.3.2 and A.4.2. They are implemented in the XTEND model transformation lan-
guage.

7.3.11 Step 11: Implement code generation templates for generic implementation
strategies

Code generation templates are used to create technical artifacts from the descriptions of
implementation strategies, which are given by implementation strategy element instances

150



in the implementation strategy models, referenced from the mapping model. When in-
terpreted by a code generation script engine, source code or other technical artifacts are
created as output, which may call domain API functions, individually implement func-
tionality, or provide configuration options for shaping a software component’s behavior.
During the generation process, parameters specified in the implementation strategy ele-
ment instances are queried, and are used to control the artifact output and the generated
functionality accordingly.

The implementation strategy descriptions reside on the same level of semantic abstraction
as the targeted output artifacts and parametrize the code generation process with knowl-
edge about the platform-specific implementation. The model-to-text transformations that
are to be developed thus mainly are horizontal transformations, serving to syntactically
convert between the representations of implementation strategy descriptions in the imple-
mentation strategy models, and the executable or interpretable source code artifacts. In
case of the templates to be developed, this means that most of the code representation
for implementation strategies can straight-forwardly be created as pre-configured blocks
of code, which are output to the target artifacts including variable parts filled with pa-
rameters derived from the implementation strategy model elements. While querying the
implementation strategy descriptions is the main source of information for controlling the
artifact generation process, the code generation templates can also resort to information
additionally retrieved from the associating mapping model and the referenced conceptual
models.

Code generation templates contain the entire knowledge about which concrete technology
to use for implementing the desired functionality on the targeted architecture. The imple-
mentation may in some cases be supplemented by domain API functionality, which gets
invoked at runtime by generated code. In other cases, the specification of the implemen-
tation strategy’s functionality may be realized mainly by the generated code, keeping the
domain API leaner and focused on architecture-specific features.

The method makes a distinction between generating artifacts for implementation strategy
types that are generically included as parts of the mapping model without any reference
to a specific target architecture, and other implementation strategy types, which originate
from architecture-specific implementation strategy meta-models that are created as part
of the individual engineering project. Generic implementation strategies previously exist,
before a specific target architecture is chosen. Code generation template functionality for
handling these implementation strategies may partially be reused from other target archi-
tecture adaptations, and may build upon general abstractions made available by the strategy
type declarations. Code generation functionality for handling architecture-specific imple-
mentation strategies, in contrast, is typically developed in parallel to the specification of
the corresponding architecture-specific implementation strategy meta-model. When both
parts are developed at the same time, the specification of the implementation strategies can
in turn be adjusted to specifics imposed by the technical realization. To put a light on these
two different modes of developing code generation templates, the currently described step
focuses on realizing generic implementation strategy types from previously existing im-
plementation strategy meta-models, while the next and last methodical step covers those

151



implementation strategy types, which are specifically modeled during the development
project as part of adapting the method to a target architecture.

Examples for generic implementation strategies that can be expected to be implementable
on multiple target architectures are the process-step implementation strategies Message
and Form, as well as Menu and Question. Among others, these strategies can be
expected to be used frequently for describing implementation options on multiple diverse
architecture platforms.

7.3.12 Step 12: Implement code generation templates for architecture-specific im-
plementation strategies

As a second step in developing code generation templates, and the last step of the overall
sub-process of adapting a target architecture, those parts of functionality which are newly
introduced by implementation strategy types in project-specific implementation strategy
meta-models are dealt with. Separating this part of developing code generation function-
ality as an individual methodical step, allows to specifically iterate between the develop-
ment of the implementation strategy meta-model on the one hand, i. e., the development
of those language concepts which are later consulted to control the code generation mech-
anism, and, on the other hand, the development of the code generation templates, as well
as an optional domain API in parallel. If the same group of developers is simultane-
ously working on these components, a significant gain in efficiency can be expected to be
achieved. This can be assumed, because developing these artifacts extensively requires to
take design decision that balance out functionality between the three of these components,
and repeatedly requires to decide in which component to integrate a change, and which
interdependencies to other components are to be obeyed.

Developing code generation templates requires a higher degree of programming skills than
writing artifacts directly, because it not only requires to develop program fragments in the
target programming language or other artifacts that describe functionality, but it also incor-
porates the use of a template language, which accesses model data, potentially processes
it, and controls the output of artifact fragments. When creating code generation templates,
the responsible software developers need to operate with at least two programming lan-
guages in parallel, and mix constructs from both languages into single code generation
templates. This requires a higher degree of expertise than software development with tra-
ditional development approaches, and narrows down the range of available professionals
who can perform these tasks.

An example set of code generation templates in the XPAND template language, and cor-
responding invocation scripts, are referenced in Appendices A.3.3 and A.4.3. The first set
of templates generates artifacts for a web application platform, the second set generates
artifacts for a BPEL-driven SOA environment as target architecture platform.

152



D
ec

is
io

n
 t

o
 in

ve
st

 in
 

d
ev

el
o

p
m

en
t

D
ec

id
e 

w
h

ic
h

 e
n

te
rp

ri
se

m
o

d
el

in
g

 la
n

g
u

ag
e 

to
 u

se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

D
ec

id
e 

w
h

ic
h

 t
ar

g
et

ar
ch

it
ec

tu
re

 t
o

 u
se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

E
n

te
rp

ri
se

 m
o

d
el

in
g

la
n

g
u

ag
e 

is
 c

h
o

se
n

Ta
rg

et
 a

rc
h

it
ec

tu
re

is
 c

h
o

se
n

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

en
te

rp
ri

se
 m

o
d

el
in

g
 la

n
g

u
ag

e?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

en
te

rp
ri

se
 m

o
d

ei
ln

g
 la

n
g

u
ag

e

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
 t

o
 u

se
th

e 
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
to

 u
se

 t
h

e 
ta

rg
et

 a
rc

h
it

ec
tu

re

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

 f
o

r 
th

e
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

D
es

cr
ib

e 
o

rg
an

iz
at

io
n

w
it

h
 e

n
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
av

ai
la

b
le

A
d

ap
t 

m
o

d
el

s 
to

 
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

In
te

rn
al

 r
ep

re
se

n
ta

ti
o

n
is

 a
va

ila
b

le
R

u
n

 c
o

m
p

le
te

n
es

s 
ch

ec
ks

  o
n

in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
n

o
t 

co
m

p
le

te

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
co

m
p

le
te

U
p

d
at

e 
o

ri
g

in
al

en
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

N
ew

 v
er

si
o

n
 o

f
en

te
rp

ri
se

 m
o

d
el

s 
av

ai
la

b
le

G
en

er
at

e 
o

r 
u

p
d

at
e 

m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
in

te
rp

re
ta

ti
o

n
 o

t 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
In

it
ia

l o
r 

u
p

d
at

ed
 m

ap
p

in
g

m
o

d
el

 is
 a

va
ila

b
le

Ed
it

 m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
 h

u
m

an
in

te
rp

re
ta

ti
o

n
 o

f 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
M

ap
p

in
g

 m
o

d
el

 a
n

d
 a

rc
h

it
ec

tu
re

m
o

d
el

 h
av

e 
b

ee
n

 m
an

u
al

ly
 e

d
it

ed

Is
 it

er
at

io
n

 s
te

p
 r

eq
u

ir
ed

 t
o

re
Þ

n
e 

en
te

rp
ri

se
 m

o
d

el
s?

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>
M

o
d

el
s 

n
ee

d
re

Þ
n

em
en

ts

M
o

d
el

s 
ar

e
co

m
p

le
te

R
u

n
 c

o
d

e 
g

en
er

at
io

n
 a

n
d

ar
ti

fa
ct

 c
re

at
io

n
E

xe
cu

ta
b

le
 a

rt
if

ac
ts

 a
va

ila
b

le

R
u

n
 c

o
m

p
le

te
n

es
s 

ch
ec

k
o

n
 m

ap
p

in
g

 m
o

d
el

M
ap

p
in

g
 m

o
d

el
is

 n
o

t 
co

m
p

le
te

M
ap

p
in

g
 m

o
d

el
is

 c
o

m
p

le
te

E
n

te
rp

ri
se

 m
o

d
el

s

E
n

te
rp

ri
se

 m
o

d
el

s
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

Tr
an

sf
o

rm
at

io
n

 t
o

 in
it

ia
liz

e
o

r 
u

p
d

at
e 

th
e 

m
ap

p
in

g
 m

o
d

el

H
in

ts
 t

o
 e

xp
re

ss
 a

d
d

it
io

n
al

 s
em

an
ti

cs
 

in
 o

ri
g

in
al

 e
n

te
rp

ri
se

 m
o

d
el

s

H
in

ts
 a

t 
ch

o
o

si
n

g
 d

ef
au

lt
im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

M
ap

p
in

g
 m

o
d

el

C
o

d
e 

g
en

er
at

io
n

 t
em

p
la

te
s

Tr
an

sf
o

rm
at

io
n

 f
ro

m
 o

ri
g

in
al

 e
n

te
rp

ri
se

m
o

d
el

s 
to

 in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

C
o

m
p

le
te

n
es

s 
ru

le
s 

fo
r

en
te

rp
ri

se
 m

o
d

el
s

V
al

id
it

y 
ch

ec
ki

n
g

 r
u

le
s

Fi
gu

re
25

:O
ve

ra
ll

m
et

ho
di

ca
lp

ro
ce

du
re

153



D
ec

is
io

n
 t

o
 in

ve
st

 in
 

d
ev

el
o

p
m

en
t

D
ec

id
e 

w
h

ic
h

 e
n

te
rp

ri
se

m
o

d
el

in
g

 la
n

g
u

ag
e 

to
 u

se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

D
ec

id
e 

w
h

ic
h

 t
ar

g
et

ar
ch

it
ec

tu
re

 t
o

 u
se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

E
n

te
rp

ri
se

 m
o

d
el

in
g

la
n

g
u

ag
e 

is
 c

h
o

se
n

Ta
rg

et
 a

rc
h

it
ec

tu
re

is
 c

h
o

se
n

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

en
te

rp
ri

se
 m

o
d

el
in

g
 la

n
g

u
ag

e?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

en
te

rp
ri

se
 m

o
d

ei
ln

g
 la

n
g

u
ag

e

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
 t

o
 u

se
th

e 
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
to

 u
se

 t
h

e 
ta

rg
et

 a
rc

h
it

ec
tu

re

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

 f
o

r 
th

e
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

D
es

cr
ib

e 
o

rg
an

iz
at

io
n

w
it

h
 e

n
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
av

ai
la

b
le

A
d

ap
t 

m
o

d
el

s 
to

 
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

In
te

rn
al

 r
ep

re
se

n
ta

ti
o

n
is

 a
va

ila
b

le
R

u
n

 c
o

m
p

le
te

n
es

s 
ch

ec
ks

  o
n

in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
n

o
t 

co
m

p
le

te

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
co

m
p

le
te

U
p

d
at

e 
o

ri
g

in
al

en
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

N
ew

 v
er

si
o

n
 o

f
en

te
rp

ri
se

 m
o

d
el

s 
av

ai
la

b
le

G
en

er
at

e 
o

r 
u

p
d

at
e 

m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
in

te
rp

re
ta

ti
o

n
 o

t 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
In

it
ia

l o
r 

u
p

d
at

ed
 m

ap
p

in
g

m
o

d
el

 is
 a

va
ila

b
le

Ed
it

 m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
 h

u
m

an
in

te
rp

re
ta

ti
o

n
 o

f 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
M

ap
p

in
g

 m
o

d
el

 a
n

d
 a

rc
h

it
ec

tu
re

m
o

d
el

 h
av

e 
b

ee
n

 m
an

u
al

ly
 e

d
it

ed

Is
 it

er
at

io
n

 s
te

p
 r

eq
u

ir
ed

 t
o

re
Þ

n
e 

en
te

rp
ri

se
 m

o
d

el
s?

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>
M

o
d

el
s 

n
ee

d
re

Þ
n

em
en

ts

M
o

d
el

s 
ar

e
co

m
p

le
te

R
u

n
 c

o
d

e 
g

en
er

at
io

n
 a

n
d

ar
ti

fa
ct

 c
re

at
io

n
E

xe
cu

ta
b

le
 a

rt
if

ac
ts

 a
va

ila
b

le

R
u

n
 c

o
m

p
le

te
n

es
s 

ch
ec

k
o

n
 m

ap
p

in
g

 m
o

d
el

M
ap

p
in

g
 m

o
d

el
is

 n
o

t 
co

m
p

le
te

M
ap

p
in

g
 m

o
d

el
is

 c
o

m
p

le
te

E
n

te
rp

ri
se

 m
o

d
el

s

E
n

te
rp

ri
se

 m
o

d
el

s
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

Tr
an

sf
o

rm
at

io
n

 t
o

 in
it

ia
liz

e
o

r 
u

p
d

at
e 

th
e 

m
ap

p
in

g
 m

o
d

el

H
in

ts
 t

o
 e

xp
re

ss
 a

d
d

it
io

n
al

 s
em

an
ti

cs
 

in
 o

ri
g

in
al

 e
n

te
rp

ri
se

 m
o

d
el

s

H
in

ts
 a

t 
ch

o
o

si
n

g
 d

ef
au

lt
im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

M
ap

p
in

g
 m

o
d

el

C
o

d
e 

g
en

er
at

io
n

 t
em

p
la

te
s

Tr
an

sf
o

rm
at

io
n

 f
ro

m
 o

ri
g

in
al

 e
n

te
rp

ri
se

m
o

d
el

s 
to

 in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

C
o

m
p

le
te

n
es

s 
ru

le
s 

fo
r

en
te

rp
ri

se
 m

o
d

el
s

V
al

id
it

y 
ch

ec
ki

n
g

 r
u

le
s

Fi
gu

re
26

:S
of

tw
ar

e
de

ve
lo

pm
en

tu
si

ng
th

e
co

nfi
gu

re
d

m
et

ho
d

154



D
ec

is
io

n
 t

o
 in

ve
st

 in
 

d
ev

el
o

p
m

en
t

D
ec

id
e 

w
h

ic
h

 e
n

te
rp

ri
se

m
o

d
el

in
g

 la
n

g
u

ag
e 

to
 u

se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

D
ec

id
e 

w
h

ic
h

 t
ar

g
et

ar
ch

it
ec

tu
re

 t
o

 u
se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

E
n

te
rp

ri
se

 m
o

d
el

in
g

la
n

g
u

ag
e 

is
 c

h
o

se
n

Ta
rg

et
 a

rc
h

it
ec

tu
re

is
 c

h
o

se
n

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

en
te

rp
ri

se
 m

o
d

el
in

g
 la

n
g

u
ag

e?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

en
te

rp
ri

se
 m

o
d

ei
ln

g
 la

n
g

u
ag

e

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
 t

o
 u

se
th

e 
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
to

 u
se

 t
h

e 
ta

rg
et

 a
rc

h
it

ec
tu

re

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

 f
o

r 
th

e
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

D
es

cr
ib

e 
o

rg
an

iz
at

io
n

w
it

h
 e

n
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
av

ai
la

b
le

A
d

ap
t 

m
o

d
el

s 
to

 
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

In
te

rn
al

 r
ep

re
se

n
ta

ti
o

n
is

 a
va

ila
b

le
R

u
n

 c
o

m
p

le
te

n
es

s 
ch

ec
ks

  o
n

in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
n

o
t 

co
m

p
le

te

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
co

m
p

le
te

U
p

d
at

e 
o

ri
g

in
al

en
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

N
ew

 v
er

si
o

n
 o

f
en

te
rp

ri
se

 m
o

d
el

s 
av

ai
la

b
le

G
en

er
at

e 
o

r 
u

p
d

at
e 

m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
in

te
rp

re
ta

ti
o

n
 o

t 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
In

it
ia

l o
r 

u
p

d
at

ed
 m

ap
p

in
g

m
o

d
el

 is
 a

va
ila

b
le

Ed
it

 m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
 h

u
m

an
in

te
rp

re
ta

ti
o

n
 o

f 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
M

ap
p

in
g

 m
o

d
el

 a
n

d
 a

rc
h

it
ec

tu
re

m
o

d
el

 h
av

e 
b

ee
n

 m
an

u
al

ly
 e

d
it

ed

Is
 it

er
at

io
n

 s
te

p
 r

eq
u

ir
ed

 t
o

re
Þ

n
e 

en
te

rp
ri

se
 m

o
d

el
s?

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>
M

o
d

el
s 

n
ee

d
re

Þ
n

em
en

ts

M
o

d
el

s 
ar

e
co

m
p

le
te

R
u

n
 c

o
d

e 
g

en
er

at
io

n
 a

n
d

ar
ti

fa
ct

 c
re

at
io

n
E

xe
cu

ta
b

le
 a

rt
if

ac
ts

 a
va

ila
b

le

R
u

n
 c

o
m

p
le

te
n

es
s 

ch
ec

k
o

n
 m

ap
p

in
g

 m
o

d
el

M
ap

p
in

g
 m

o
d

el
is

 n
o

t 
co

m
p

le
te

M
ap

p
in

g
 m

o
d

el
is

 c
o

m
p

le
te

E
n

te
rp

ri
se

 m
o

d
el

s

E
n

te
rp

ri
se

 m
o

d
el

s
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

Tr
an

sf
o

rm
at

io
n

 t
o

 in
it

ia
liz

e
o

r 
u

p
d

at
e 

th
e 

m
ap

p
in

g
 m

o
d

el

H
in

ts
 t

o
 e

xp
re

ss
 a

d
d

it
io

n
al

 s
em

an
ti

cs
 

in
 o

ri
g

in
al

 e
n

te
rp

ri
se

 m
o

d
el

s

H
in

ts
 a

t 
ch

o
o

si
n

g
 d

ef
au

lt
im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

M
ap

p
in

g
 m

o
d

el

C
o

d
e 

g
en

er
at

io
n

 t
em

p
la

te
s

Tr
an

sf
o

rm
at

io
n

 f
ro

m
 o

ri
g

in
al

 e
n

te
rp

ri
se

m
o

d
el

s 
to

 in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

C
o

m
p

le
te

n
es

s 
ru

le
s 

fo
r

en
te

rp
ri

se
 m

o
d

el
s

V
al

id
it

y 
ch

ec
ki

n
g

 r
u

le
s

Fi
gu

re
28

:C
yc

le
of

ed
iti

ng
,t

ra
ns

fo
rm

in
g,

an
d

ch
ec

ki
ng

co
nc

ep
tu

al
m

od
el

s

155



In
it

ia
l o

r 
u

p
d

at
e

d
 m

ap
p

in
g

m
o

d
e

l i
s 

av
ai

la
b

le

M
ap

p
in

g
 m

o
d

e
l a

n
d

 a
rc

h
it

e
ct

u
re

m
o

d
e

l h
av

e
 b

e
e

n
 m

an
u

al
ly

 e
d

it
e

d

R
e

vi
se

 p
ro

ce
ss

 s
te

p
 

m
ap

p
in

g
s

<
 S

o
ft

w
ar

e
 A

rc
h

it
e

ct
 >

R
e

so
u

rc
e

 t
yp

e
s

ar
e

 s
p

e
ci

fi
e

d

A
d

d
 d

e
ta

il 
in

fo
rm

at
io

n
 t

o
 p

ro
ce

ss
st

e
p

 m
ap

p
in

g
s 

w
h

e
re

 r
e

q
u

ir
e

d

<
 S

o
ft

w
ar

e
 A

rc
h

it
e

ct
 >

Sp
e

ci
fy

 d
at

a 
ty

p
e

s 
fo

r
in

fo
rm

at
io

n
 r

e
so

u
rc

e
 m

ap
p

in
g

s

<
 S

o
ft

w
ar

e
 A

rc
h

it
e

ct
 >

B
in

d
 u

se
r 

ac
co

u
n

t 
m

an
ag

e
m

e
n

t 
to

o
rg

an
iz

at
io

n
al

 r
o

le
s 

an
d

 g
ro

u
p

s

<
 S

o
ft

w
ar

e
 A

rc
h

it
e

ct
 >

Sp
e

ci
fy

 f
o

rm
s 

fo
r 

in
fo

rm
at

io
n

re
so

u
rc

e
 a

cc
e

ss
 m

ap
p

in
g

s

<
 S

o
ft

w
ar

e
 A

rc
h

it
e

ct
 >

Sp
e

ci
fy

 r
e

so
u

rc
e

 t
yp

e
s

in
 r

e
so

u
rc

e
 m

ap
p

in
g

s

<
 S

o
ft

w
ar

e
 A

rc
h

it
e

ct
 >

Sp
e

ci
fy

 in
vo

ca
ti

o
n

 m
e

th
o

d
s

fo
r 

e
xt

e
rn

al
 a

p
p

lic
at

io
n

 m
ap

p
in

g
s

<
 S

o
ft

w
ar

e
 A

rc
h

it
e

ct
 >

Fi
ll-

in
 r

e
fe

re
n

ce
s 

to
 m

an
u

al
ly

 w
ri

tt
e

n
im

p
le

m
e

n
ta

ti
o

n
 c

o
m

p
o

n
e

n
ts

<
 S

o
ft

w
ar

e
 A

rc
h

it
e

ct
 >

Im
p

le
m

e
n

t 
m

an
u

al
ly

 w
ri

tt
e

n
im

p
le

m
e

n
ta

ti
o

n
 c

o
m

p
o

n
e

n
ts

,
if

 n
o

t 
d

o
n

e
 a

lr
e

ad
y

<
 S

o
ft

w
ar

e
 D

e
ve

lo
p

e
r 

>

D
at

a 
ty

p
e

s
ar

e
 s

p
e

ci
fi

e
d

Fo
rm

s 
ar

e
sp

e
ci

fi
e

d
U

se
r 

ac
co

u
n

t 
m

an
ag

e
m

e
n

t
is

 b
o

u
n

d

In
vo

ca
ti

o
n

 m
e

th
o

d
s

fo
r 

e
xt

e
rn

al
 a

p
p

lic
at

io
n

 s
p

e
ci

fi
e

d

P
ro

ce
ss

 s
te

p
 m

ap
p

in
g

s
ar

e
 r

e
vi

se
d

D
e

ta
il 

in
fo

rm
at

io
n

ad
d

e
d

R
e

fe
re

n
ce

s 
to

 m
an

u
al

ly
w

ri
tt

e
n

 c
o

m
p

o
n

e
n

ts
 a

d
d

e
d

M
ap

p
in

g
 m

o
d

e
l

Fi
gu

re
29

:P
ro

ce
ss

of
m

an
ua

lly
ed

iti
ng

th
e

m
ap

pi
ng

m
od

el

156



D
ec

is
io

n
 t

o
 in

ve
st

 in
 

d
ev

el
o

p
m

en
t

D
ec

id
e 

w
h

ic
h

 e
n

te
rp

ri
se

m
o

d
el

in
g

 la
n

g
u

ag
e 

to
 u

se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

D
ec

id
e 

w
h

ic
h

 t
ar

g
et

ar
ch

it
ec

tu
re

 t
o

 u
se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

E
n

te
rp

ri
se

 m
o

d
el

in
g

la
n

g
u

ag
e 

is
 c

h
o

se
n

Ta
rg

et
 a

rc
h

it
ec

tu
re

is
 c

h
o

se
n

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

en
te

rp
ri

se
 m

o
d

el
in

g
 la

n
g

u
ag

e?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

en
te

rp
ri

se
 m

o
d

ei
ln

g
 la

n
g

u
ag

e

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
 t

o
 u

se
th

e 
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
to

 u
se

 t
h

e 
ta

rg
et

 a
rc

h
it

ec
tu

re

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

 f
o

r 
th

e
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

D
es

cr
ib

e 
o

rg
an

iz
at

io
n

w
it

h
 e

n
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
av

ai
la

b
le

A
d

ap
t 

m
o

d
el

s 
to

 
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

In
te

rn
al

 r
ep

re
se

n
ta

ti
o

n
is

 a
va

ila
b

le
R

u
n

 c
o

m
p

le
te

n
es

s 
ch

ec
ks

  o
n

in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
n

o
t 

co
m

p
le

te

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
co

m
p

le
te

U
p

d
at

e 
o

ri
g

in
al

en
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

N
ew

 v
er

si
o

n
 o

f
en

te
rp

ri
se

 m
o

d
el

s 
av

ai
la

b
le

G
en

er
at

e 
o

r 
u

p
d

at
e 

m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
in

te
rp

re
ta

ti
o

n
 o

t 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
In

it
ia

l o
r 

u
p

d
at

ed
 m

ap
p

in
g

m
o

d
el

 is
 a

va
ila

b
le

Ed
it

 m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
 h

u
m

an
in

te
rp

re
ta

ti
o

n
 o

f 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
M

ap
p

in
g

 m
o

d
el

 a
n

d
 a

rc
h

it
ec

tu
re

m
o

d
el

 h
av

e 
b

ee
n

 m
an

u
al

ly
 e

d
it

ed

Is
 it

er
at

io
n

 s
te

p
 r

eq
u

ir
ed

 t
o

re
Þ

n
e 

en
te

rp
ri

se
 m

o
d

el
s?

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>
M

o
d

el
s 

n
ee

d
re

Þ
n

em
en

ts

M
o

d
el

s 
ar

e
co

m
p

le
te

R
u

n
 c

o
d

e 
g

en
er

at
io

n
 a

n
d

ar
ti

fa
ct

 c
re

at
io

n
E

xe
cu

ta
b

le
 a

rt
if

ac
ts

 a
va

ila
b

le

R
u

n
 c

o
m

p
le

te
n

es
s 

ch
ec

k
o

n
 m

ap
p

in
g

 m
o

d
el

M
ap

p
in

g
 m

o
d

el
is

 n
o

t 
co

m
p

le
te

M
ap

p
in

g
 m

o
d

el
is

 c
o

m
p

le
te

E
n

te
rp

ri
se

 m
o

d
el

s

E
n

te
rp

ri
se

 m
o

d
el

s
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

Tr
an

sf
o

rm
at

io
n

 t
o

 in
it

ia
liz

e
o

r 
u

p
d

at
e 

th
e 

m
ap

p
in

g
 m

o
d

el

H
in

ts
 t

o
 e

xp
re

ss
 a

d
d

it
io

n
al

 s
em

an
ti

cs
 

in
 o

ri
g

in
al

 e
n

te
rp

ri
se

 m
o

d
el

s

H
in

ts
 a

t 
ch

o
o

si
n

g
 d

ef
au

lt
im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

M
ap

p
in

g
 m

o
d

el

C
o

d
e 

g
en

er
at

io
n

 t
em

p
la

te
s

Tr
an

sf
o

rm
at

io
n

 f
ro

m
 o

ri
g

in
al

 e
n

te
rp

ri
se

m
o

d
el

s 
to

 in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

C
o

m
p

le
te

n
es

s 
ru

le
s 

fo
r

en
te

rp
ri

se
 m

o
d

el
s

V
al

id
it

y 
ch

ec
ki

n
g

 r
u

le
s

Fi
gu

re
30

:C
yc

le
of

in
iti

al
iz

in
g

or
up

da
tin

g
a

m
ap

pi
ng

m
od

el
,m

an
ua

lly
re

vi
si

ng
it,

an
d

au
to

m
at

ic
al

ly
ch

ec
ki

ng
its

va
lid

ity

157



D
ec

is
io

n
 t

o
 in

ve
st

 in
 

d
ev

el
o

p
m

en
t

D
ec

id
e 

w
h

ic
h

 e
n

te
rp

ri
se

m
o

d
el

in
g

 la
n

g
u

ag
e 

to
 u

se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

D
ec

id
e 

w
h

ic
h

 t
ar

g
et

ar
ch

it
ec

tu
re

 t
o

 u
se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

E
n

te
rp

ri
se

 m
o

d
el

in
g

la
n

g
u

ag
e 

is
 c

h
o

se
n

Ta
rg

et
 a

rc
h

it
ec

tu
re

is
 c

h
o

se
n

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

en
te

rp
ri

se
 m

o
d

el
in

g
 la

n
g

u
ag

e?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

en
te

rp
ri

se
 m

o
d

ei
ln

g
 la

n
g

u
ag

e

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
 t

o
 u

se
th

e 
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
to

 u
se

 t
h

e 
ta

rg
et

 a
rc

h
it

ec
tu

re

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

 f
o

r 
th

e
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

D
es

cr
ib

e 
o

rg
an

iz
at

io
n

w
it

h
 e

n
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
av

ai
la

b
le

A
d

ap
t 

m
o

d
el

s 
to

 
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

In
te

rn
al

 r
ep

re
se

n
ta

ti
o

n
is

 a
va

ila
b

le
R

u
n

 c
o

m
p

le
te

n
es

s 
ch

ec
ks

  o
n

in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
n

o
t 

co
m

p
le

te

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
co

m
p

le
te

U
p

d
at

e 
o

ri
g

in
al

en
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

N
ew

 v
er

si
o

n
 o

f
en

te
rp

ri
se

 m
o

d
el

s 
av

ai
la

b
le

G
en

er
at

e 
o

r 
u

p
d

at
e 

m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
in

te
rp

re
ta

ti
o

n
 o

t 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
In

it
ia

l o
r 

u
p

d
at

ed
 m

ap
p

in
g

m
o

d
el

 is
 a

va
ila

b
le

Ed
it

 m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
 h

u
m

an
in

te
rp

re
ta

ti
o

n
 o

f 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
M

ap
p

in
g

 m
o

d
el

 a
n

d
 a

rc
h

it
ec

tu
re

m
o

d
el

 h
av

e 
b

ee
n

 m
an

u
al

ly
 e

d
it

ed

Is
 it

er
at

io
n

 s
te

p
 r

eq
u

ir
ed

 t
o

re
Þ

n
e 

en
te

rp
ri

se
 m

o
d

el
s?

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>
M

o
d

el
s 

n
ee

d
re

Þ
n

em
en

ts

M
o

d
el

s 
ar

e
co

m
p

le
te

R
u

n
 c

o
d

e 
g

en
er

at
io

n
 a

n
d

ar
ti

fa
ct

 c
re

at
io

n
E

xe
cu

ta
b

le
 a

rt
if

ac
ts

 a
va

ila
b

le

R
u

n
 c

o
m

p
le

te
n

es
s 

ch
ec

k
o

n
 m

ap
p

in
g

 m
o

d
el

M
ap

p
in

g
 m

o
d

el
is

 n
o

t 
co

m
p

le
te

M
ap

p
in

g
 m

o
d

el
is

 c
o

m
p

le
te

E
n

te
rp

ri
se

 m
o

d
el

s

E
n

te
rp

ri
se

 m
o

d
el

s
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

Tr
an

sf
o

rm
at

io
n

 t
o

 in
it

ia
liz

e
o

r 
u

p
d

at
e 

th
e 

m
ap

p
in

g
 m

o
d

el

H
in

ts
 t

o
 e

xp
re

ss
 a

d
d

it
io

n
al

 s
em

an
ti

cs
 

in
 o

ri
g

in
al

 e
n

te
rp

ri
se

 m
o

d
el

s

H
in

ts
 a

t 
ch

o
o

si
n

g
 d

ef
au

lt
im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

M
ap

p
in

g
 m

o
d

el

C
o

d
e 

g
en

er
at

io
n

 t
em

p
la

te
s

Tr
an

sf
o

rm
at

io
n

 f
ro

m
 o

ri
g

in
al

 e
n

te
rp

ri
se

m
o

d
el

s 
to

 in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

C
o

m
p

le
te

n
es

s 
ru

le
s 

fo
r

en
te

rp
ri

se
 m

o
d

el
s

V
al

id
it

y 
ch

ec
ki

n
g

 r
u

le
s

Fi
gu

re
32

:T
ak

in
g

th
e

de
ci

si
on

to
ad

ap
tt

he
m

et
ho

d
to

a
se

to
fe

nt
er

pr
is

e
m

od
el

in
g

la
ng

ua
ge

s

158



M
et

h
o

d
 n

o
t 

co
n

Þ
g

u
re

d
 y

et
fo

r 
th

e 
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

 f
o

r 
th

e
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

Id
en

ti
fy

 la
n

g
u

ag
e 

co
n

ce
p

ts
eq

u
iv

al
en

t 
in

 E
M

L 
an

d
 E

E
M

- 1
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

Eq
u

iv
al

en
t 

la
n

g
u

ag
e

co
n

ce
p

ts
 a

re
 id

en
ti

Þ
ed

Im
p

le
m

en
t 

tr
an

sf
o

rm
at

io
n

 r
u

le
s

fo
r 

eq
u

iv
al

en
t 

la
n

g
u

ag
e 

co
n

ce
p

ts

- 2
 -

<
 S

o
ft

w
ar

e 
D

ev
el

o
p

er
 >

Tr
an

sf
o

rm
at

io
n

 r
u

le
s 

fo
r 

eq
u

iv
al

en
t

la
n

g
u

ag
e 

co
n

ce
p

ts
 a

re
 im

p
le

m
en

te
d

Fo
rm

u
la

te
 h

in
ts

 t
o

 e
xp

re
ss

o
th

er
 E

E
M

 c
o

n
ce

p
ts

 in
 E

M
L

- 3
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

H
in

ts
 a

re
 d

o
cu

m
en

te
d

Im
p

le
m

en
t 

tr
an

sf
o

rm
at

io
n

 r
u

le
s 

fo
r

o
th

er
 la

n
g

u
ag

e 
co

n
ce

p
ts

 v
ia

 h
in

ts

- 4
 -

<
 S

o
ft

w
ar

e 
D

ev
el

o
p

er
 >

Tr
an

sf
o

rm
at

io
n

 f
ro

m
 o

ri
g

in
al

 e
n

te
rp

ri
se

m
o

d
el

s 
to

 in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

H
in

ts
 t

o
 e

xp
re

ss
 a

d
d

it
io

n
al

 s
em

an
ti

cs
 

in
 o

ri
g

in
al

 e
n

te
rp

ri
se

 m
o

d
el

s

Fi
gu

re
33

:S
ub

-p
ro

ce
ss

to
ad

ap
tt

he
m

et
ho

d
to

a
se

to
fe

nt
er

pr
is

e
m

od
el

in
g

la
ng

ua
ge

s

159



D
ec

is
io

n
 t

o
 in

ve
st

 in
 

d
ev

el
o

p
m

en
t

D
ec

id
e 

w
h

ic
h

 e
n

te
rp

ri
se

m
o

d
el

in
g

 la
n

g
u

ag
e 

to
 u

se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

D
ec

id
e 

w
h

ic
h

 t
ar

g
et

ar
ch

it
ec

tu
re

 t
o

 u
se

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

E
n

te
rp

ri
se

 m
o

d
el

in
g

la
n

g
u

ag
e 

is
 c

h
o

se
n

Ta
rg

et
 a

rc
h

it
ec

tu
re

is
 c

h
o

se
n

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

en
te

rp
ri

se
 m

o
d

el
in

g
 la

n
g

u
ag

e?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

H
as

 t
h

e 
m

et
h

o
d

 b
ee

n
 c

o
n

Þ
g

u
re

d
 t

o
u

se
 t

h
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

?

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

en
te

rp
ri

se
 m

o
d

ei
ln

g
 la

n
g

u
ag

e

N
ee

d
 t

o
 c

o
n

Þ
g

u
re

 t
h

e 
m

et
h

o
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
 t

o
 u

se
th

e 
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

C
o

n
Þ

g
u

re
 t

h
e 

m
et

h
o

d
to

 u
se

 t
h

e 
ta

rg
et

 a
rc

h
it

ec
tu

re

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

 f
o

r 
th

e
en

te
rp

ri
se

 m
o

d
el

in
g

 la
n

g
u

ag
e

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

D
es

cr
ib

e 
o

rg
an

iz
at

io
n

w
it

h
 e

n
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
av

ai
la

b
le

A
d

ap
t 

m
o

d
el

s 
to

 
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

In
te

rn
al

 r
ep

re
se

n
ta

ti
o

n
is

 a
va

ila
b

le
R

u
n

 c
o

m
p

le
te

n
es

s 
ch

ec
ks

  o
n

in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
n

o
t 

co
m

p
le

te

E
n

te
rp

ri
se

 m
o

d
el

s
ar

e 
co

m
p

le
te

U
p

d
at

e 
o

ri
g

in
al

en
te

rp
ri

se
 m

o
d

el
s

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>

N
ew

 v
er

si
o

n
 o

f
en

te
rp

ri
se

 m
o

d
el

s 
av

ai
la

b
le

G
en

er
at

e 
o

r 
u

p
d

at
e 

m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
in

te
rp

re
ta

ti
o

n
 o

t 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
In

it
ia

l o
r 

u
p

d
at

ed
 m

ap
p

in
g

m
o

d
el

 is
 a

va
ila

b
le

Ed
it

 m
ap

p
in

g
 m

o
d

el
 a

cc
o

rd
in

g
 t

o
 h

u
m

an
in

te
rp

re
ta

ti
o

n
 o

f 
th

e 
en

te
rp

ri
se

 m
o

d
el

s
M

ap
p

in
g

 m
o

d
el

 a
n

d
 a

rc
h

it
ec

tu
re

m
o

d
el

 h
av

e 
b

ee
n

 m
an

u
al

ly
 e

d
it

ed

Is
 it

er
at

io
n

 s
te

p
 r

eq
u

ir
ed

 t
o

re
Þ

n
e 

en
te

rp
ri

se
 m

o
d

el
s?

<
 B

u
si

n
es

s 
A

n
al

ys
t 

>
M

o
d

el
s 

n
ee

d
re

Þ
n

em
en

ts

M
o

d
el

s 
ar

e
co

m
p

le
te

R
u

n
 c

o
d

e 
g

en
er

at
io

n
 a

n
d

ar
ti

fa
ct

 c
re

at
io

n
E

xe
cu

ta
b

le
 a

rt
if

ac
ts

 a
va

ila
b

le

R
u

n
 c

o
m

p
le

te
n

es
s 

ch
ec

k
o

n
 m

ap
p

in
g

 m
o

d
el

M
ap

p
in

g
 m

o
d

el
is

 n
o

t 
co

m
p

le
te

M
ap

p
in

g
 m

o
d

el
is

 c
o

m
p

le
te

E
n

te
rp

ri
se

 m
o

d
el

s

E
n

te
rp

ri
se

 m
o

d
el

s
in

te
rn

al
 r

ep
re

se
n

ta
ti

o
n

Tr
an

sf
o

rm
at

io
n

 t
o

 in
it

ia
liz

e
o

r 
u

p
d

at
e 

th
e 

m
ap

p
in

g
 m

o
d

el

H
in

ts
 t

o
 e

xp
re

ss
 a

d
d

it
io

n
al

 s
em

an
ti

cs
 

in
 o

ri
g

in
al

 e
n

te
rp

ri
se

 m
o

d
el

s

H
in

ts
 a

t 
ch

o
o

si
n

g
 d

ef
au

lt
im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

M
ap

p
in

g
 m

o
d

el

C
o

d
e 

g
en

er
at

io
n

 t
em

p
la

te
s

Tr
an

sf
o

rm
at

io
n

 f
ro

m
 o

ri
g

in
al

 e
n

te
rp

ri
se

m
o

d
el

s 
to

 in
te

rn
al

 r
ep

re
se

n
ta

ti
o

n

C
o

m
p

le
te

n
es

s 
ru

le
s 

fo
r

en
te

rp
ri

se
 m

o
d

el
s

V
al

id
it

y 
ch

ec
ki

n
g

 r
u

le
s

Fi
gu

re
35

:T
ak

in
g

th
e

de
ci

si
on

to
ad

ap
tt

he
m

et
ho

d
to

a
ne

w
ta

rg
et

ar
ch

ite
ct

ur
e

160



M
et

h
o

d
 n

o
t 

ye
t 

co
n

Þ
g

u
re

d
fo

r 
th

e 
ta

rg
et

 a
rc

h
it

ec
tu

re

M
et

h
o

d
 is

 c
o

n
Þ

g
u

re
d

fo
r 

th
e 

ta
rg

et
 a

rc
h

it
ec

tu
re

C
o

n
ce

p
tu

al
iz

e 
ta

rg
et

ar
ch

it
ec

tu
re

 A
P

I

- 1
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

Ta
rg

et
 a

rc
h

it
ec

tu
re

 A
P

I
is

 c
o

n
ce

p
tu

al
iz

ed
Im

p
le

m
en

t 
ta

rg
et

 
ar

ch
it

ec
tu

re
 A

P
I

- 2
 -

<
 S

o
ft

w
ar

e 
D

ev
el

o
p

er
 >

Ta
rg

et
 a

rc
h

it
ec

tu
re

 A
P

I
is

 im
p

le
m

en
te

d

Im
p

le
m

en
t 

co
d

e 
g

en
er

at
io

n
 t

em
p

la
te

s 
fo

r
g

en
er

ic
 im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

- 1
1

 -

<
 S

o
ft

w
ar

e 
D

ev
el

o
p

er
 >

M
et

a-
m

o
d

el
 a

rc
h

it
ec

tu
re

-s
p

ec
iÞ

c
p

ro
ce

ss
-s

te
p

 im
p

le
m

en
ta

ti
o

n
s

- 3
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

Se
q

u
en

ce
 im

p
le

m
en

ta
-

ti
o

n
s 

ar
e 

m
o

d
el

ed

C
o

n
ce

p
tu

al
iz

e 
h

in
ts

 a
t 

ch
o

o
si

n
g

d
ef

au
lt

 im
p

le
m

en
ta

ti
o

n
 s

tr
at

eg
ie

s

- 9
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

H
in

ts
 a

re
 c

o
n

ce
p

tu
al

iz
ed

Im
p

le
m

en
t 

h
in

ts
 a

t 
ch

o
o

si
n

g
d

ef
au

lt
 im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

- 1
0

 -

<
 S

o
ft

w
ar

e 
D

ev
el

o
p

er
 >

H
in

ts
 a

re
 im

p
le

m
en

te
d

C
o

d
e 

g
en

er
at

io
n

 f
o

r 
g

en
er

ic
st

ra
te

g
ie

s 
is

 im
p

le
m

en
te

d
Im

p
le

m
en

t 
co

d
e 

g
en

er
at

io
n

 t
em

p
la

te
s 

fo
r

ar
ch

it
ec

tu
re

-s
p

ec
iÞ

c 
im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

- 1
2

 -

<
 S

o
ft

w
ar

e 
D

ev
el

o
p

er
 >

Ta
rg

et
 a

rc
h

it
ec

tu
re

 A
P

I

Im
p

le
m

en
ta

ti
o

n
 s

tr
at

eg
y

m
et

a-
m

o
d

el

H
in

ts
 a

t 
ch

o
o

si
n

g
 d

ef
au

lt
im

p
le

m
en

ta
ti

o
n

 s
tr

at
eg

ie
s

Tr
an

sf
o

rm
at

io
n

 t
o

 in
it

ia
liz

e
o

r 
u

p
d

at
e 

th
e 

m
ap

p
in

g
 m

o
d

el

M
et

a-
m

o
d

el
 a

rc
h

it
ec

tu
re

-s
p

ec
iÞ

c
ev

en
t 

im
p

le
m

en
ta

ti
o

n
s

- 4
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

M
et

a-
m

o
d

el
 a

rc
h

it
ec

tu
re

-s
p

ec
iÞ

c
re

so
u

rc
e 

im
p

le
m

en
ta

ti
o

n
s

- 6
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

M
et

a-
m

o
d

el
 a

rc
h

it
ec

tu
re

-s
p

ec
iÞ

c
ac

to
r 

im
p

le
m

en
ta

ti
o

n
s

- 5
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

M
et

a-
m

o
d

el
 a

rc
h

it
ec

tu
re

-s
p

ec
iÞ

c
in

fo
rm

at
io

n
 o

b
je

ct
 im

p
le

m
en

ta
ti

o
n

s

- 7
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

C
o

d
e 

g
en

er
at

io
n

 t
em

p
la

te
s

V
al

id
it

y 
ch

ec
ki

n
g

 r
u

le
s

M
et

a-
m

o
d

el
 a

rc
h

it
ec

tu
re

-s
p

ec
i-

Þ
c 

se
q

u
en

ce
 im

p
le

m
en

ta
ti

o
n

s

- 8
 -

<
 S

o
ft

w
ar

e 
A

rc
h

it
ec

t 
>

P
ro

ce
ss

-s
te

p
 im

p
le

m
en

-
ta

ti
o

n
s 

ar
e 

m
o

d
el

ed
Ev

en
t 

im
p

le
m

en
ta

-
ti

o
n

s 
ar

e 
m

o
d

el
ed

A
ct

o
r 

im
p

le
m

en
ta

-
ti

o
n

s 
ar

e 
m

o
d

el
ed

In
fo

rm
at

io
n

 o
b

je
ct

ty
p

es
 a

re
 m

o
d

el
ed

R
es

o
u

rc
e 

im
p

le
m

en
ta

-
ti

o
n

s 
ar

e 
m

o
d

el
ed

Fi
gu

re
36

:S
ub

-p
ro

ce
ss

to
ad

ap
tt

he
m

et
ho

d
to

a
ne

w
ta

rg
et

ar
ch

ite
ct

ur
e

161



8 Design of a prototypical enterprise information system

Up to now, the method components and their application have been described on a general
abstract level, independent from any concrete enterprise modeling language (computa-
tion independent conceptualizations), independent from available implementation strate-
gies (platform independent conceptualizations), and independent from specific technical
details about the realization of the implementation strategies (platform specific conceptu-
alizations). On each of these three layers, a wide variety of contingent realization options
exist, with diverse alternatives of how to concretely specify conceptual elements and tech-
nological components in the context of applying the suggested method.

In a first step, general design considerations, as they have to be taken into account for any
software engineering project independently of the applied engineering method, are made.
Determining the design of the software system to be created resembles the design phase
as described by several known software engineering process methods [DBLV09, SK08].
These design considerations both relate to platform independent aspects, and platform-
specific implementation issues. Sect. 8.1 covers this initial conceptualization phase.

Platform-specific design decisions that are to be taken determine the way how functionality
is realized and presented to a user on a specific front-end. While all kinds of front-ends can
be assumed to provide computing capabilities as well as display technology to interface
with a user via a graphical user interface (GUI), the front-ends may be restricted to be used
with specific programming languages and application programming interfaces (APIs), and
the available GUI metaphors may differ on diverse platforms. As a consequence, the de-
sign decisions must incorporate how to realize GUI components that offer functionality
provided by implementation strategies in a platform-specific and architecture-bound way.
Sect. 8.2 takes a closer look at the user interface conceptualization for an enterprise infor-
mation system (EIS).

When the system design is specified, both for the entire distributed system, as well as for
the individual front-end functionalities, a domain API is made available. This API pro-
vides common abstractions used throughout the EIS, e. g., interfaces and type declarations
of shared objects, prepared to be used by multiple generated software artifacts on poten-
tially different target architecture platforms. An abstract example domain API is presented
in Sect. 8.3.

Concrete conceptualizations of exemplary implementation strategies, which form the
building blocks of EIS functionality, will further be elaborated in Sect. 9.

The integration of computation independent concepts of enterprise modeling languages
with the method finally is demonstrated in Sect. 11.1, where an existing external enterprise
modeling language is adapted to the method.

162



8.1 General architectural design considerations

To prepare the development of code generation templates or any other execution mecha-
nism for a running EIS, general design decisions need to be taken with regard to the target
architecture on which the application is intended to be executed. These general decisions
relate to questions of coordination in a distributed environment, control flow management,
the possible use of a workflow execution engine, architectural options for data storage
mechanisms, and responsibilities for automatic execution of algorithmic process-steps.
These facets of general design consideration are discussed in the following.

8.1.1 Coordination in a distributed environment

One fundamental design decision with significant influence on the implementation com-
ponents to be created in a development project, lies in the decision how to technicallly
realize control over the process flow, i. e., how the overall software system coordinates
in which order individual process-member implementations are to be executed. EISs are
required to provide automatic mechanisms that control the execution of process-member
implementations in the right order, according to the underlying business process model
(BPM) descriptions (see Req. 5). Since it is also a main purpose of an EIS to at the same
time provide a system which supports the integration of multiple distributed actors and
multiple distributed software components (see Req. 3), a coordination mechanism must be
available which binds together distributed components and allows to control the interaction
work among them. Assuming that every actor is using at least one front-end application at
a time to perform his or her work, there must be a facility which allows the coordination
of these multiple front-ends on their client nodes, e. g., to notify about process-steps in
which the client is to take part, or to pass over workflow control to a different client and
an according user, if a change of an actor is intended in the business process model (see
Req. 5).

The conceptualizations of either a central process flow control point of responsibility, or a
decentralized architecture, form another continuum along which combined mechanisms in
an actual implementation environment can be applied. A mixture of both approaches may,
e. g., consist of a decentralized messaging system, in which client nodes autonomously
communicate about passing control flow and associated data to each other, accompanied
by a central observer component which keeps track of the overall process instance states,
and may also hold responsible for providing long-term persistence services and locking or
synchronizing functionality.

Centralized process flow control One option to ensure that process-step implementa-
tions are executed in correct sequences, and that control flow is correctly passed between
users and front-end, is the use of a separate control flow management entity, which actively
knows about the modeled process structures, and tells front-ends to invoke the process-
steps that are to be executed per user.

163



The traditional architecture to realize this coordination component is a client-server archi-
tecture [TvS03], which distinguishes between back-end and front-end roles. In practice,
such a control flow component is typically realized using a dedicated process execution
language interpreter deployed on a central process orchestration node, e. g., a Business
Process Execution Language (BPEL) execution engine running on a single server.

Besides actively coordinating the process instance executions, the central back-end com-
ponent can additionally keep track of monitoring the process instances that are currently
being executed, and can be used to impose usage control mechanisms on the behavior of
client instances [NS07, PHB06], which can be relevant in untrusted, security-demanding
environments (see Req. 7).

The general pattern of a centralized client-server architecture, which incorporates multiple
distributed physical machines in a network environment, is displayed in Fig. 37.

Server

Mobile Pad 
Client

Desktop Client

Mobile Phone 
Client

Desktop Client

Mobile Phone 
Client

Mobile Pad 
Client

network 
environment

Figure 37: Distributed components in a client-server architecture

The prototypical example implementations of the method presented in this work both base
on a client-server architecture.

De-centralized process flow control An alternative to a centralized process control ap-
proach is letting every client implementation decide individually which next process-steps
are to be executed. Instead of centralizing knowledge and control about the process exe-
cution, the latter option requires involved client implementations to have knowledge about
a partial structure of the overall processes they are involved in, and they gain control on
how to interface to other nodes during process execution.

A decentralized conceptualization incorporates distributed client nodes, which locally take
the responsibility to invoke process-steps according to the modeled process descriptions,
and pass the process control flow to each other autonomously when the control flow

164



changes or splits to other clients. This system design pattern is also typically referenced
as peer-to-peer (P2P) architecture [Ras97]. There are multiple theoretical options to re-
alize such a coordination in a distributed setup without a central control instance, which
can be implemented as control mechanisms, if the design option to implement the control
mechanism individually for the project is chosen.

The decision whether to choose for a decentralized architecture may be influenced by
necessary security considerations in untrusted or open environments (see Req. 7). When
developing software with increased claims for security, the decentralized system style of-
fers the inherent disadvantage of physically passing responsibility for executing parts of
the executed process to individual client nodes in the distributed environment. If no ac-
companying monitoring and/or central message passing mechanisms are established in the
system, this allows any client with malicious intent to manipulate the process control flow
in undesired ways. The efforts for building and applying mechanisms to prevent such ma-
licious use may exceed the efforts for operating centralized and better monitorable system
architectures. As a consequence, a decentralized system architecture is less likely to be
chosen as the underlying system pattern in security-sensitive environments than a central
control flow approach.

The design decision, whether to use a central process flow control component, or apply
a decentralized control flow architecture, also exhibits aspects with regard to the central-
ization or decentralization of data storage handling. This issue is discussed in the next
subsection.

8.1.2 Realizing data storages

A mechanism for storing data is required by the EIS, in order to manage the use of in-
formation resources in a distributed environment and persistently spanning over multiple
sessions of each user.

Diverse technical approaches exist for making data persistent, and make data accessible in
a distributed environment. The most popular solution to this challenge is using a central-
ized relational database management system, which is accessed remotely by distributed
clients [RG03]. Other approaches may support the use of differently structured data, e. g.,
XML databases [BDG+00]. In theory, also a distributed storage of data on diverse front-
end devices can be imagined, together with a shared access protocol, which allows remote
clients to access this persistent data without the use of any central controlling instance.

For the purpose of a prototypical implementation design, a central data storage service
can be conceptualized that handles entire XML documents as persisted units on a central
server. This way of storing data persistently implicates a number of unsolved deficiencies,
e. g., synchronization problems if multiple concurrent accesses are not properly schedules,
or the resource is not properly locked during potential modifications. These problems be-
long to a well-known set of theoretical core principles in computer science, with a variety
of elaborated solution approaches, which is why they further remain undiscussed here.

165



The prototypical implementation suggests an IInformationObjectStorageSer-
vice interface as part of the domain API, which describes a central persistent storage
service. Its declaration is shown in Fig. 39.

8.1.3 Automatically executed process-steps

As with every distributed architecture, trade-offs occur where to locate the controlling
components that determine the dynamic behavior of the running process instance. In an
architecture with centralized back-end components and remote front-end clients, auto-
matic processing steps can either be designed to be processed on back-end servers, or be
executed on front-end devices. The extreme ends of this trade-off are known as either a
strict “thin client” solution, where as much as possible processing logic is handled by cen-
tralized components, or a “fat client” approach by which front-end functionality is used to
perform processing.

The example implementation puts its focus on demonstrating how multiple alternative
platforms are integrated as one EIS. For this reason, the upcoming prototypical realization
will put most automatic processing responsibility onto the clients, while the back-end
server component remains a simple centralized control and storage mechanism keeping
track of the process-steps executed on the clients.

8.2 User interface sketch

If an EIS is intended to provide human user access as part of the implemented processes,
core parts of its functionality have to be exposed to human users by graphical user interface
(GUI) components which provide access to the available functionality. As a raw sketch,
Fig. 38 assembles multiple prototypically sketched GUI widgets to represent components
in a GUI environment, as they are generally required in an EIS to perform human user
interactions during software-supported business processes. Any concrete target architec-
ture is expected to offer more ergonomic GUI concepts which will realize these abstract
elements in a platform specific way.

Some target architectures, such as a service oriented architecture (SOA) orchestration en-
vironment running BPEL processes, may make use of extending standards such as the
BPEL4PEOPLE human interaction extension to BPEL, which will cause interpretation
engines implementing the BPEL4PEOPLE standard [Org10b] to render GUIs that will
contain more detailed and concrete realizations of the abstract example given here. In
Sect. 10, the option of choosing a BPEL execution environment as a target implementa-
tion architecture for the Software Engineering with Enterprise Models (SEEM) method is
discussed in greater depth.

The abstract GUI components sketched in Fig. 38 represent human interaction access
points for using core functionality of EISs, such as being notified about tasks to perform,
choose tasks to perform, work on tasks in-place in the environment of the EIS front-end
application, or spawn external applications to work on semi-automatic tasks as part of a

166



workflow process. Tasks to be performed in-place may typically be related to viewing or
editing form documents. Tasks performed with the help of external applications may cover
editing of standard office-type electronic documents, e. g., MICROSOFT WORD® files.

A technically simple, but nevertheless important interaction feature of an EIS, is to inform
human users about manual tasks to be performed, and to notify a central coordination sys-
tem when the user marks a manual tasks as completed [RDB+08]. Handling the require-
ment interaction steps for performing human tasks may be implemented by a standard
framework implementation, e. g., BPEL4PEOPLE [Org10b].

Enterprise Information System

Register New Client
Unregister Client

Start

Available Processes

Active Processes

Handle order no. 342167
Register new client no. 5021
Create weekly report no. 38
Create weekly report no. 39

ToDo

Show information for new clients
Edit new client registration
Manually hand over keys to client

Info

Select

Documents

Client no. 4083
Client no. 4287
Client no. 4829
Client no. 5003
Order no. 29983
Order no. 30202

Add...Edit... Remove

Communication

Ulrich Frank
Stefan Eicker
Stefan Strecker

PhoneE-mail

Information for new clients

Info text

100 x 100

Hand over keys to client

Hit OK when the manual task is
done.

OK

New client registration

Type of client

Client name

Jens Gulden

Business

Private

Public Finish

file:///home/user/workspace-latex/diss/fig/gui-abstract.svg

1 von 1 05.10.2012 22:11

Figure 38: Schematic sketch of an abstract user interface with generic interaction func-
tionality for an EIS front-end

The interaction components sketched in Fig. 38 get realized with a different visual look-
and-feel by different kinds of implementations. However, the type of functionality that is
made accessible to human-computer interaction by the individual parts of the GUI remains
invariant with regard to different implementation technologies. To further describe the
sketched GUI elements, their functionality is closer looked at in the following subsections.

8.2.1 Process instance management functionality

A first set of interaction options that are made accessible to a human user by the GUI in
order to provide interaction with the EIS consists of means for accessing and managing

167



the current process instances, in which the user is involved as a participating actor. Such
a list is made available as a GUI component, which allows the user to select a running
process-step instance and cause the front-end application to display all GUI components
which are currently active to support the user in performing this process-step. The GUI
element which is responsible for offering this functionality is displayed on the middle left-
hand-side in the sketched application window in Fig. 38, placed in the box labeled “Active
Processes”. This box contains the list of process instances the user is currently involved
in.

Depending on whether the overall system conceptualization allows for directly creating
new process instances from the front-end, and given the current user is authorized to start
new process instances this way, the GUI offers a list of process types which are available
for the current user to be directly instantiated. This functionality is sketched in the lower
part of the left-hand-side in Fig. 38, with the box labeled “Available Processes”, show-
ing those types of processes which the current user may directly instantiate. Selecting a
process type and pushing the “Start” button initiates a new instance from the currently
selected type entry. It depends on the business process conceptualizations that are realized
by the EIS, whether a direct instantiation of processes makes sense, or does not need to be
offered as front-end functionality.

8.2.2 Process-step editor functionality

The main middle area in the sketched application window in Fig. 38 hosts individual editor
windows, which provide software functionality internally offered by the EIS to perform
individual process-steps in-place with the EIS front-end application. If this support is not
provided by an external application, the process-step front-end implementation opens a
window in this main area.

Process-steps for viewing or editing electronic documents typically interact with the user
by opening an editor window showing the document, and optionally allowing to edit it
where required for performing the process-step. Since functionality for accessing and
handling information is especially relevant in EIS (see Req. 6), the overall GUI provides
additional points of access to information handling functionality, which are discussed in
the following subsection.

8.2.3 Information access and document editing functionality

Document handling functionality is realized by displaying a list with currently accessed
and edited document instances and available document types. Selecting an item from the
list opens a corresponding GUI editor component which provides access to the document,
or shows a newly created instance of a document type. The editor may either be a com-
ponent internally available as part of the EIS front-end application, or an external editor
which is associated to be responsible for handling the document instance in focus.

A GUI element, which offers the above described interaction functionality, is displayed in
the lower-middle part in the sketched application window in Fig. 38. It is shown as a box

168



labeled “Documents”. The entries gathered in “Documents” provide access to existing
documents, which may be grouped by their document types or by another business-related
grouping criteria. The “Edit. . . ”, “Add. . . ” and “Remove” buttons allow for directly per-
forming actions on the document instances and types, which may in turn lead to events
fired in running process instances, e. g., as “new document created” or “document deleted”
business events.

8.2.4 Manual task handling functionality

During the execution of process instances, some process-steps are intentionally performed
manually. These process-steps typically are expressed by corresponding model elements
in the conceptual business process models, which mark them as “manual”. Although these
process model elements by nature of the manual tasks do not contain any formal semantics
about the internal composition of the task to be performed, basic software support for
guiding the execution of manual process-steps is offered by the EIS front-end. Software
support for performing manual process tasks notifies the user when a manual task is to
be performed, optionally provides additional links to instruction documents about how to
perform the task, and allows to gain an overview on what manual tasks are currently to be
performed.

After a manual task has been completed, the EIS provides means for the user to notify the
system about the completion of the corresponding process-step. In cases where a result
is achieved by the manual task, the EIS additionally offers input facilities for entering the
achieved results of a manually performed process-step. This functionality is vital for the
overall process control mechanism to work, because the execution of manual process-steps
needs to be interfaced to the software system by at least allowing the system to notify the
user about manual process-steps to be performed, and allow the user to respond by marking
a manual process-step as completed when it is done. Optionally, return results or, in case
of unsuccessful execution, problem documentation is supplied by the user.

In the GUI sketch in Fig. 38, the manually performed process-steps are listed in the “To
Do” list box in the upper-left corner. It shows the currently performed process-steps,
including manual ones.

In other concrete implementation environments, GUI interaction element for handling
manual process-steps are provided by underlying standard implementations, e. g., inter-
preters of the BPEL4PEOPLE [Org10b] specification. These implementations will typi-
cally provide the core functionality sketched by the abstract GUI model discussed above,
and add more standard specific and implementation dependent features to the GUI.

8.2.5 Decision functionality

During the execution of a process, there may be alternative branches to choose how to
proceed with the process, or information may be required to parametrize further process-
step instances to be used in the process. These decisions to control the process flow are
interactively queried from the user via the GUI front-end. For example, at some point

169



during the execution of a process, the user is presented a menu from which to choose
further actions to take. Or, different modes for performing subsequent automatic or semi-
automatic operation are offered interactively, to allow the user to determine in which way
subsequent steps of action are performed.

Taking decisions resembles performing manual process-steps in the sense that the result
of the decision is solely dependent on human responsibility, and cannot be calculated al-
gorithmically. However, taking a decision about the subsequent process control flow typ-
ically does not impose any external activities. Thus, comparable to performing a manual
process-step, the user remains operating the software system, and enters his or her decision
via input GUI elements.

The abstract GUI model shown in Fig. 38 does not demonstrate specific GUI elements for
entering decisions, since these may be realized by standard pop-up menus and input forms
as they are available on most GUI-capable platforms. Like any other process-step to be
performed, a decision to take may appear in the to-do list of tasks yet to be performed
sketched in the upper-left corner of Fig. 38.

Depending on the process semantics, decisions may also be required to be taken immedi-
ately, in which case the EIS front-end prompts the user directly at the point in time when
the decision result is required to continue with the process flow.

8.2.6 Communication functionality

Communication is vital to most distributed organizations, and support for communication,
either internally among members of the organization, or externally with business partners
and other associates, is one core axis along which the activities of an organization can
be described and overseen. As a consequence, communication tasks play a central role
in business process descriptions, and require functionality to foster communication as an
integral component of an EIS.

An EIS typically provides access to individual communication facilities, e. g., an exter-
nal e-mail client application. It also supports the user in overviewing his or her possible
communication partners by giving a list of persons and institutions to contact. This list
of contact persons can be context-sensitive, to show those contact partners with a higher
priority, who are most likely to be contacted in the course of the currently performed
process-step.

Communication often is an explicit part of the business processes that are supported by
the EIS. Hence, the EIS’s workflow control functionality and communication functional-
ity are interwoven, to allow for initiating communication relationships as parts of running
process instances, as well as to be able to treat communication activities as starting point
triggers for spawning new process instances. For example, a new order process instance
may be spawned when an e-mail arrives at a given e-mail address. As part of this newly
started process instance, an employee of the dispatch department will be assigned to han-
dle the order, make sure the goods are available for packaging, and finally send out an
e-mail to the customer to notify him or her that the order has arrived. The first communi-
cation activity, receiving an order by e-mail, automatically starts a new process instance.

170



The second communication activity is initiated during the execution of the process, and
the process execution engine automatically invokes an external e-mail client as the corre-
sponding communication tool.

The abstract GUI model in Fig. 38 contains an area in the lower right part of the sketched
application window, which contains a list of possible communication partners, with whom
communication can be manually initiated from the EIS front-end, complementary to the
automatic communication handling functionality provided by the EIS.

8.2.7 Project specific functionality

Besides generic features providing human-computer interaction facilities in an EIS, any
individual development project may require to offer specific functionality, which reaches
beyond the generic patterns of interaction with the EIS. Concrete EIS implementations
will, in addition to what is shown in the generic sketch in Fig. 38, also incorporate means
to access project specific functionality, which in the end reflect specifics of the organization
supported by the EIS, and allows to accentuate competitive advantages within the EIS.

Since in principle no further assumptions can be made from a general method description
perspective about the specific functionality to be realized in individual projects, the op-
tion for including specific GUI functionality can only be mentioned at this point, without
preparing further methodical underpinning for this.

8.3 Abstract domain API

Resulting from the previous considerations about general architectural decisions and avail-
able end-user functionality in an EIS, a compact abstract domain API has been designed,
which provides generic platform-independent interfaces as an object-oriented structural
basis for a distributed EIS. This API is given as an example of how some of the funda-
mental concepts discussed in the method description can be realized in an object-oriented
software system. Not every software development project using the SEEM method will
make use of an own domain API, if, e. g., basic concepts for executing workflow steps
are instead provided by an execution mechanism such as a workflow management system
(WfMS).

Several fundamental design decisions are reflected by the example API, e. g., the decision
to use a centrally controlled process management engine and a central information object
storage system. The API formalizes these design decisions by providing abstract interfaces
and classes to describe the system’s architecture. It may additionally contain concrete and
reusable implementations, which are invoked either from generated code or from a runtime
interpreter.

The example API is displayed as a Unified Modeling Language (UML) class-diagram in
Fig. 39.

171



The classes displayed in Fig. 39 are organized into two distinct packages, which express
the architectural role of the components described by these interfaces. The first set of
interfaces resides in package application. These interfaces provide the fundamental
structure of implementation components running as part of distributed front-end applica-
tions. The second set of interfaces is organized in package backend, to describe the
centralized server components that coordinate the workflow and manage persistent data
storage.

The example domain API serves as technical means to clarify concepts of the described
method. It is not applied in the prototypical implementations presented in Sect. 10 and
Sect. 11.

8.3.1 Front-end API interfaces

The first set of interfaces model the front-end application functionality for EIS on an ab-
stract level. They are displayed in Fig. 40 as an excerpt of Fig. 39.

application

IUserProcess

+getSession() : IUserSession
+getInformationObject(key:String) : Object
+setInformationObject(key:String, information:Object) : void
+getProcessID() : int

IUserSession

+getUsername() : String
+getProcessControlService() : IProcessControlService
+getInformationObjectStorage() : IInformationObjectStorageService
+getScheduledProcessSteps() : List<IProcessStep>
+scheduleProcessStep(schedule:IProcessStepSchedule) : void

IProcessStep

+getProcess() : IUserProcess
+getState() : int
+execute() : void

ProcessStepState

#WAITING : int = 1
#STARTED : int = 2
#FINISHED : int = 3
#CANCELED : int = 4

backend

IProcessControlService

+scheduleProcessStep(schedule:IProcessStepSchedule) : int
+getProcessStepSchedules(username:String) : List<IProcessStepSchedule>
+removeProcessStepSchedule(processElementId:int) : void
+createNewProcess(type:int) : int

IInformationObjectStorageService

+loadInformationObject(username:String, type:Class, location:Object) : Object
+saveInformationObject(username:String, information:Object, location:Object) : void

IProcessStepSchedule

+getProcessID() : int
+getRequestingProcessElementID() : int
+getRequestingUsername() : String
+getProcessStepClassname() : String
+getUsername() : String
+getProcessScheduleID() : int
+getProcessStep() : IProcessStep

Figure 40: Front-end API interfaces for distributed EIS applications

Interface IUserSession The IUserSession interface represents a session for an
individual user per front-end application. There can be at most one session per front-end
application, but a user may be logged into multiple sessions at once at different locations
and on different front-end devices.

The notion of a IUserSession binds together the identification of a concrete user with
his or her current status in working on process-steps. Every user is considered to be in-
volved in zero or more process instances at the same time. Being involved in a process
instance means for a user to have to work on at least one process-step that is part of this
process instance. The IUserSession interface allows to query all those process-step
instances which currently are requested to be performed by the user. Derived from these
process-steps, the process instances in which the user is currently involved can be deter-
mined. A user is also considered to be involved in a process instance, if he or she has
already performed a process-step from this process instance, and according to the process
type model, another process-step from the same instance might follow later for the same
user. As long as any other actor is involved in this process instance, i. e., the process
instance has not reached a defined end event yet, a user remains involved in a process in-
stance, if, by the structural declaration of the process, there is a chance that the user will
have to perform another process-step from the same process instance.

172



To coordinate with other front-ends in the distributed environment, the IUserSession
interface holds references to the central coordination components for process control flow
and data persistence. It uses the IProcessControlService to query scheduled
process-steps for the user, and to notify other front-ends of other users, if the control flow
is to be continued at another place.

The getUsername() method of the interface allows to query, which user is authenti-
cated as owner of this IUserSession. Implementations of process-steps may use this
to get the current user name for further evaluation of access rights or other user-related
information.

With the getProcessControlService() method, access to an instance of IPro-
cessControlService is gained. An implementation of IUserSession should re-
turn a reference to a locally callable object of type IProcessControlService, which
transparently interfaces to the underlying implementation of the central process control
service, i. e., a local caller of methods on this instance will not notify that the implemen-
tation is actually accessed via a web-service call to a remote machine.

The getInformationObjectStorage() method provides access to the central re-
mote information object storage. In the same way as the getProcessControlSer-
vice() method, getInformationObjectStorage() returns a locally accessible
object, whose methods transparently adapt to the remote web-service for information ob-
ject storage.

getScheduledProcessSteps() returns a list of IProcessStep instances which
are prepared to be performed by the user, but have not been started yet. Using this function
will allow to build a to-do list in a front-end GUI, in which the user is able to pick which
process-step to perform next.

Finally, using the scheduleProcessStep(schedule) method, a new process-step
is requested to be performed by either the same user on the same front-end, or any other
combination of user and logical location in the distributed environment. This method is
typically called at the end of a IProcessStep’s execute() method from concrete
implementations of IProcessStep, to pass the control flow on to process-member im-
plementations, which are determined to follow as subsequent steps in the process.

In order to reference concepts from the backend package, the UML model of the domain
API (see Fig. 39) contains a dependency relationship from class IUserSession to pack-
age backend. Interfaces from package backend are used via the methods getPro-
cessControlService(), getInformationObjectStorage() and sched-
uleProcessStep(schedule).

Interface IUserProcess The IUserProcess interface represents a process in-
stance referenced from one IUserSession. Every process instance owns a unique iden-
tifier, which is global to all client front-ends participating in the process. It can be retrieved
via the method getProcessID(). The IUserSession interface wraps around this
global id to give each process instance a local identity, and provides additional local func-
tionality attached to process instances.

173



A reference to the user session representation of type IUserSession is retrieved via
the method getSession(). Every instance of IUserProcess belongs to exactly on
parent IUserSession.

The getInformationObject(key) method retrieves an information object from a
named memory slot that is locally associated to the IUserProcess. The inverse op-
eration, putting an information object into a named slot, is realized by the method set-
InformationObject(key, Object).

Interface IProcessStep With the IProcessStep interface, the most general rep-
resentation of an executable software representation of a process-member is given. The
core purpose of encapsulating executable functionality by instances of this concept is ful-
filled by incorporating a “strategy” pattern (in the terminology of [GHJV94]) with the
execute() method. The execute() method is invoked by the front-end application
when an instance of the implemented process-step is scheduled to be performed and started
as member of a running global process.

Implementations of the IProcessStep interface may apply a more fine-grained struc-
turing to their internal execution. It is, e. g., possible to add a generic abstract class that im-
plements IProcessStep, and refines the coarse notion of a single execute()method
to a more detailed sequence of prepareExecute(), doExecute(), cleanupEx-
ecute(). Concrete implementations can then subclass this abstract superclass and over-
ride the individual methods where desired.

Besides providing the execute() method, the IProcessStep interface keeps a refer-
ence to the process instance, of which it is part, accessed via the getProcess()method.

A straight-forward notion of a life-cycle is attached to instances of IProcessStep.
Via the getState() method, a state code is retrieved, which has the symbolic meaning
defined in class ProcessStepState (see below). State handling is considered an affair
of the managing application, i. e., a concrete implementation of IUserSession, which
keeps track of scheduled process-steps, and their execution when requested by the user or
the system.

As already noted in Sect. 9.1, on the implementation level, it appears useful to blur the
distinction between conceptually expressed process-steps and events, which are, however,
well-justified distinct concepts on the domain-specific level of enterprise models. Using
only a single notion of process-step in the API allows for a generic and interchangeable
application of IProcessStep implementations for both process-steps and events. This
consideration stems from the idea that implemented representations of events will, if not
trivial, have to perform some automatic actions in most cases anyway. Since this is also
the generic notion behind process-steps, a distinction between process-step implementa-
tions and event implementations is not made in the API. This design decision is taken
in parallel to the meta-modeling of the concepts in the mapping model, which declare all
process-member implementation strategies as subclasses of the general abstract meta-class
AbstractProcessMemberImplementation (see Sect. 9.1).

174



Class ProcessStepState The states that a process-step implementation instance
goes through from being scheduled, to being started, executed and ended, are represented
by the entries in class ProcessStepState. The meaning of the symbolic state identi-
fiers are as follows:

• WAITING marks a process-step implementation instance as being scheduled to be
performed on the local front-end

• STARTED indicates that an instance’s execute() method has been invoked, and
that the operation is still proceeding

• FINISHED denotes a state when the process-step has regularly finished

• and CANCELED marks a process-step as irregularly terminated in a technical sense,
e. g., if a runtime error occurs on the level of the execution engine or underlying
programming language

Note that the FINISHED and CANCELED states do not refer to any conceptual informa-
tion about a successfully finished or unsuccessfully finished process-step in the sense of
the business process model. If, on the business process level, process-steps may lead to
different results in terms of regular completion versus cancellation, these outcomes and
their influence on the subsequent process control flow should be modeled explicitly on the
business process level.

8.3.2 Back-end API interfaces

The second group of interfaces modeled by the API describes the most basic back-end
functionality, required by a distributed EIS architecture with centralized coordination com-
ponents. Fig. 41 shows the back-end interfaces, which are further explained in the follow-
ing, as an excerpt of Fig. 39.

application

IUserProcess

+getSession() : IUserSession
+getInformationObject(key:String) : Object
+setInformationObject(key:String, information:Object) : void
+getProcessID() : int

IUserSession

+getUsername() : String
+getProcessControlService() : IProcessControlService
+getInformationObjectStorage() : IInformationObjectStorageService
+getScheduledProcessSteps() : List<IProcessStep>
+scheduleProcessStep(schedule:IProcessStepSchedule) : void

IProcessStep

+getProcess() : IUserProcess
+getState() : int
+execute() : void

ProcessStepState

#WAITING : int = 1
#STARTED : int = 2
#FINISHED : int = 3
#CANCELED : int = 4

backend

IProcessControlService

+scheduleProcessStep(schedule:IProcessStepSchedule) : int
+getProcessStepSchedules(username:String) : List<IProcessStepSchedule>
+removeProcessStepSchedule(processElementId:int) : void
+createNewProcess(type:int) : int

IInformationObjectStorageService

+loadInformationObject(username:String, type:Class, location:Object) : Object
+saveInformationObject(username:String, information:Object, location:Object) : void

IProcessStepSchedule

+getProcessID() : int
+getRequestingProcessElementID() : int
+getRequestingUsername() : String
+getProcessStepClassname() : String
+getUsername() : String
+getProcessScheduleID() : int
+getProcessStep() : IProcessStep

Figure 41: Back-end API interfaces for a central coordination server for distributed EIS
applications

Interface IProcessControlService The IProcessControlService inter-
face describes a remotely accessible service for control flow coordination among multiple
front-end clients. To provide this functionality, the service manages a list of process-step

175



schedules, which are entries that request a specific user to perform a type of process-step
as part of a running process instance.

Process-step schedules are requests from a previous user performing a previous process-
step, to a new user to perform a new process-step. Both users may be the same, although in
case of keeping the control flow associated to the same user, control flow passing may also
be handled locally by the front-end client, independently from the central process control
service back-end.

The currently sketched API expects front-end clients to regularly poll the information
about requested process-step schedules from the central service. There is no notification
mechanism that pushes information about newly added process-step schedules for a spe-
cific user to his or her running client application, which makes the service architecture for
the process control service appear reasonably simple.

Using the scheduleProcessStep(schedule) operation, remote clients add a re-
quest to users on possibly other clients to execute a process-step. The detail structure of
the passed schedule parameter is described further below.

To query the list of currently scheduled process-step requests for a given user, the get-
ProcessStepSchedules(username) is to be invoked at least after every comple-
tion of a single process-step, to present an updated list of process-steps to perform to the
user.

When a process-step has been performed on a front-end client, the client notifies the central
control service about the step’s completion by calling removeProcessStepSched-
ule(processElementId).

To be able to instantiate process-steps on the client front-end, they must be uniquely related
to one process instance which they belong to. To start a new process from one of the
front-ends, the process control service must first be requested to generate a unique id
for the new process instance, which will globally identify this process instance among
all front-ends that will possibly get involved in performing process-steps as part of this
process instance. The new process id is requested from the central service by calling
createNewProcess(type). All available types of process-step implementations are
identified via a unique number, too. It is up to the code generation templates to mark every
generated concrete process type implementation with an increasingly counting number,
making each type uniquely identifiable.

Interface IProcessStepSchedule With the interface IProcessStepSched-
ule, requests for process-steps to be carried out are described and handled. The individual
entries which describe the request are:

• getProcessID(): Returns the id of the process instance in which the process-
step is intended to run.

• getRequestingProcessElementID(): Returns the id of the process-step
from which the request is issued, i. e., the process-step that is the previous step in
the logical control flow.

176



• getRequestingUserName(): Returns the user account identifier under which
the previous process-step was executed.

• getProcessStepTypeId(): Returns the unique type identifier which marks an
instantiable class that implements IProcessStep. The id is one-to-one mappable
onto a class-name, pointing to the class that gets instantiated on the requested user’s
front-end when the process-step is scheduled for execution.

• getUsername(): Returns the user account name, for which the requested
process-step is to be executed. The process-step will be scheduled for requested
execution on that front-end platform, on which the user currently is logged in or
will log in the next time.

• getProcessScheduleID(): If a process-step schedule is handled centrally
by the process control service, it owns a unique id. The id allows for identifying
the schedule entry for later removing it from the central list of scheduled process-
steps, after the step has been executed on a front-end client. Process-step schedules,
which are only used locally to pass the control flow among process-steps that are
subsequently performed by the same user on the same front-end client, do not make
use of this id.

• getProcessStep(): Front-end applications will create executable instances of
process-step implementations as a reaction to requested process-step schedules. For
each process-step schedule, there will be exactly one associated process-step imple-
mentation, i. e., an instance of a class that realizes interface IProcessStep. Im-
plementations of the IProcessStepSchedule interface on the front-end keep a
reference to this executable process-step instance, which is accessible via the get-
ProcessStep() method.

Interface IInformationObjectStorage The IInformationObjectStor-
age interface describes another central service, which is responsible for realizing a com-
mon data storage and exchange mechanism for the distributed EIS. The service is kept
simple and only declares the notion of loading and storing information objects. The kind
of object is kept open by the interface, however, the interface is suggested with the im-
plementation of a shared XML file base in mind, in which entire XML documents are
stored.

The loadInformationObject(username, type, location) service meth-
od serves to retrieve an information object from a named location. In implementa-
tion terms, this may be thought of as retrieving an XML document from a file, which
is stored on the central information object server. With the saveInformationOb-
ject(username, information, location) method, an information object is
stored on the server.

This basic retrieve-and-store model is not suitable for productive use, since it ignores as-
pects of concurrent access to information objects. Also, working on the granularity level

177



of entire documents makes some information access tasks unreasonable inefficient. How-
ever, the concept is rich enough to demonstrate the use of a central information object
storage service in a distributed EIS environment.

To make this mechanism feasible for productive use in a shared environment, i. e., avoid
loss of information and inconsistencies caused by uncoordinated concurrent access, the
two access methods could be combined with at least a locking mechanism that prevents
an information object from being used concurrently in two different process-steps at the
same time. A more elaborate API for productive use in organizations should take this into
account.

The domain API is one out of two mechanisms in the SEEM method, which formalize
knowledge about a target architecture for which software is to be created. The second
mechanism are implementation strategy types specified via an implementation strategy
meta-model. Example implementation strategy types are elaborated in the following sec-
tion.

178



ap
p

lic
at

io
n

IU
se

rP
ro

ce
ss

+
g

et
Se

ss
io

n
()

 : 
IU

se
rS

es
si

o
n

+
g

et
In

fo
rm

at
io

n
O

b
je

ct
(k

ey
:S

tr
in

g
) :

 O
b

je
ct

+
se

tI
n

fo
rm

at
io

n
O

b
je

ct
(k

ey
:S

tr
in

g
, i

n
fo

rm
at

io
n

:O
b

je
ct

) :
 v

o
id

+
g

et
P

ro
ce

ss
ID

()
 : 

in
t

IU
se

rS
es

si
o

n

+
g

et
U

se
rn

am
e(

) :
 S

tr
in

g
+

g
et

P
ro

ce
ss

C
o

n
tr

o
lS

er
vi

ce
()

 : 
IP

ro
ce

ss
C

o
n

tr
o

lS
er

vi
ce

+
g

et
In

fo
rm

at
io

n
O

b
je

ct
St

o
ra

g
e(

) :
 II

n
fo

rm
at

io
n

O
b

je
ct

St
o

ra
g

eS
er

vi
ce

+
g

et
Sc

h
ed

u
le

d
P

ro
ce

ss
St

ep
s(

) :
 L

is
t<

IP
ro

ce
ss

St
ep

>
+

sc
h

ed
u

le
P

ro
ce

ss
St

ep
(s

ch
ed

u
le

:IP
ro

ce
ss

St
ep

Sc
h

ed
u

le
) :

 v
o

id

IP
ro

ce
ss

St
ep

+
g

et
P

ro
ce

ss
()

 : 
IU

se
rP

ro
ce

ss
+

g
et

St
at

e(
) :

 in
t

+
ex

ec
u

te
()

 : 
vo

id

P
ro

ce
ss

St
ep

St
at

e

#
W

A
IT

IN
G

 : 
in

t 
=

 1
#

ST
A

R
T

E
D

 : 
in

t 
=

 2
#

FI
N

IS
H

E
D

 : 
in

t 
=

 3
#

C
A

N
C

E
LE

D
 : 

in
t 

=
 4

b
ac

ke
n

d

IP
ro

ce
ss

C
o

n
tr

o
lS

er
vi

ce

+
sc

h
ed

u
le

P
ro

ce
ss

St
ep

(s
ch

ed
u

le
:IP

ro
ce

ss
St

ep
Sc

h
ed

u
le

) :
 in

t
+

g
et

P
ro

ce
ss

St
ep

Sc
h

ed
u

le
s(

u
se

rn
am

e:
St

ri
n

g
) :

 L
is

t<
IP

ro
ce

ss
St

ep
Sc

h
ed

u
le

>
+

re
m

o
ve

P
ro

ce
ss

St
ep

Sc
h

ed
u

le
(p

ro
ce

ss
E

le
m

en
tI

d
:in

t)
 : 

vo
id

+
cr

ea
te

N
ew

P
ro

ce
ss

(t
yp

e:
in

t)
 : 

in
t

IIn
fo

rm
at

io
n

O
b

je
ct

St
o

ra
g

eS
er

vi
ce

+
lo

ad
In

fo
rm

at
io

n
O

b
je

ct
(u

se
rn

am
e:

St
ri

n
g

, t
yp

e:
C

la
ss

, l
o

ca
ti

o
n

:O
b

je
ct

) :
 O

b
je

ct
+

sa
ve

In
fo

rm
at

io
n

O
b

je
ct

(u
se

rn
am

e:
St

ri
n

g
, i

n
fo

rm
at

io
n

:O
b

je
ct

, l
o

ca
ti

o
n

:O
b

je
ct

) :
 v

o
id

IP
ro

ce
ss

St
ep

Sc
h

ed
u

le

+
g

et
P

ro
ce

ss
ID

()
 : 

in
t

+
g

et
R

eq
u

es
ti

n
g

P
ro

ce
ss

E
le

m
en

tI
D

()
 : 

in
t

+
g

et
R

eq
u

es
ti

n
g

U
se

rn
am

e(
) :

 S
tr

in
g

+
g

et
P

ro
ce

ss
St

ep
C

la
ss

n
am

e(
) :

 S
tr

in
g

+
g

et
U

se
rn

am
e(

) :
 S

tr
in

g
+

g
et

P
ro

ce
ss

Sc
h

ed
u

le
ID

()
 : 

in
t

+
g

et
P

ro
ce

ss
St

ep
()

 : 
IP

ro
ce

ss
St

ep

Fi
gu

re
39

:A
PI

in
te

rf
ac

es
to

im
pl

em
en

tE
IS

fu
nc

tio
na

lit
y

179



9 Example implementation strategies

To deal with a variety of target platform architectures, the method supports two kinds of
implementation strategy descriptions, which are on the one hand generic and platform-
independent implementation strategies, which are applicable to all target architecture plat-
forms, and, on the other hand, implementation strategies available on a specific architec-
ture only, exclusively enabled by the use of specific underlying technology. The latter kind
cannot be known in advance before the method has been configured for concrete target ar-
chitecture platforms, and thus will have to be meta-modeled as part of the adaptation of
the method for concrete target architecture platforms.

To exemplify the use of generic implementation strategies, the prototypical implementa-
tion suggests a number of platform-independent example implementation strategies which
are considered to be useful for EIS development. They are integrated as language elements
into the mapping model and are specified as concrete subclasses of the following abstract
superclasses:

• AbstractProcessMemberImplementation

• AbstractConditionImplementation

• AbstractControlFlowImplementation

• AbstractActorResolverImplementation

• AbstractActorImplementation

• AbstractResourceImplementation

• AbstractResourceAccessImplementation

• AbstractInformationTypeImplementation

• AbstractInformationStorageImplementation

9.1 Implementation strategies for process-members

Meta-classes which make up the platform-independent implementation strategies for
process-members of the mapping meta-model are displayed in Fig. 42 in ECORE nota-
tion. They are further discussed in the following sections.

9.1.1 Interactive process-steps

Subclasses of AbstractInteractiveProcessStepImplementation provide
implementation components for semi-automatic process-steps, which perform interaction
with the user on a front-end device. The following meta-classes are included in the map-
ping meta-model to exemplify types of interactive process-step implementation strategies.

180



• Form

• Message

• Menu

• Question

• WriteEMail

• VisitWebsite

• ManualWebServiceAccess

• ManualExternalApplicationAccess

• ManualTask

Fig. 43 and Fig. 44 show the meta-classes representing these implementation strategy
types. They are described in the following.

Question

multiple : EBoolean
freetext : EBoolean

ManualExternalApplicationAccess

EventResourceCRUD

modes : EnumCRUD

<<enumeration>>
EnumCRUD

CREATE
READ
UPDATE
DELETE

ResourceMapping

Menu

multiple : EBoolean

AbstractProcessStepHighLevel

Login Logout

AdminAccounts

ManualTask

description : EString

AbstractAutomaticProcessStepImplementation

CustomAutomatic

classname : EString

AbstractUserInteractionImplementation

description : EString

ExternalApplication

executable : EString

ArchitectureSpecificEventImplementation extension
point

EditMyAccount

Welcome

AbstractProcessMemberImplementation

name : EString

AbstractMenuItem

ArchitectureSpecificAutomaticProcessStepImplementation

ArchitectureSpecificProcessStepImplementation

Synchronizer

ManualWebServiceAccess

operation : EString
interface : EString

WriteEMail

address : EString
subject : EString

VisitWebsite

url : EString

SendEMail

to : EString
cc : EString
bcc : EString
from : EString
subject : EString
text : EString

AbstractProcessStepImplementation

AbstractEventImplementation

AbstractInteractiveProcessStepImplementation

extension
point

extension
point

MenuItem

name : EString

ArchitectureSpecificMenuItem

extension
point

EMailReceived

recipientFilter : EString
subjectFilter : EString

Automatic

SendSMS

phoneNo : EString
text : EString

Form AbstractInformationStorageImplementation

ArchitectureSpecificUserInteraction

extension
point

CancelOption SequenceMapping

Message
text : EString
level : EnumMessageLevel

<<enumeration>>
EnumMessageLevel
INFO
WARN
ERROR

answerOptions 0..*

menuItems 0..*

externalApplication 1

resource 1

formDescription 1

follower 0..1

storage 0..1

Figure 43: Meta-model excerpt specifying platform-independent user decision implemen-
tation strategies

181



Question

multiple : EBoolean
freetext : EBoolean

ManualExternalApplicationAccess

EventResourceCRUD

modes : EnumCRUD

<<enumeration>>
EnumCRUD

CREATE
READ
UPDATE
DELETE

ResourceMapping

Menu

multiple : EBoolean

AbstractProcessStepHighLevel

Login Logout

AdminAccounts

ManualTask

description : EString

AbstractAutomaticProcessStepImplementation

CustomAutomatic

classname : EString

AbstractUserInteractionImplementation

description : EString

ExternalApplication

executable : EString

ArchitectureSpecificEventImplementation extension
point

EditMyAccount

Welcome

AbstractProcessMemberImplementation

name : EString

AbstractMenuItem

ArchitectureSpecificAutomaticProcessStepImplementation

ArchitectureSpecificProcessStepImplementation

Synchronizer

ManualWebServiceAccess

operation : EString
interface : EString

WriteEMail

address : EString
subject : EString

VisitWebsite

url : EString

SendEMail

to : EString
cc : EString
bcc : EString
from : EString
subject : EString
text : EString

AbstractProcessStepImplementation

AbstractEventImplementation

AbstractInteractiveProcessStepImplementation

extension
point

extension
point

MenuItem

name : EString

ArchitectureSpecificMenuItem

extension
point

EMailReceived

recipientFilter : EString
subjectFilter : EString

Automatic

SendSMS

phoneNo : EString
text : EString

Form AbstractInformationStorageImplementation

ArchitectureSpecificUserInteraction

extension
point

CancelOption SequenceMapping

Message
text : EString
level : EnumMessageLevel

<<enumeration>>
EnumMessageLevel
INFO
WARN
ERROR

answerOptions 0..*

menuItems 0..*

externalApplication 1

resource 1

formDescription 1

follower 0..1

storage 0..1

(a)

Question

multiple : EBoolean
freetext : EBoolean

ManualExternalApplicationAccess

EventResourceCRUD

modes : EnumCRUD

<<enumeration>>
EnumCRUD

CREATE
READ
UPDATE
DELETE

ResourceMapping

Menu

multiple : EBoolean

AbstractProcessStepHighLevel

Login Logout

AdminAccounts

ManualTask

description : EString

AbstractAutomaticProcessStepImplementation

CustomAutomatic

classname : EString

AbstractUserInteractionImplementation

description : EString

ExternalApplication

executable : EString

ArchitectureSpecificEventImplementation extension
point

EditMyAccount

Welcome

AbstractProcessMemberImplementation

name : EString

AbstractMenuItem

ArchitectureSpecificAutomaticProcessStepImplementation

ArchitectureSpecificProcessStepImplementation

Synchronizer

ManualWebServiceAccess

operation : EString
interface : EString

WriteEMail

address : EString
subject : EString

VisitWebsite

url : EString

SendEMail

to : EString
cc : EString
bcc : EString
from : EString
subject : EString
text : EString

AbstractProcessStepImplementation

AbstractEventImplementation

AbstractInteractiveProcessStepImplementation

extension
point

extension
point

MenuItem

name : EString

ArchitectureSpecificMenuItem

extension
point

EMailReceived

recipientFilter : EString
subjectFilter : EString

Automatic

SendSMS

phoneNo : EString
text : EString

Form AbstractInformationStorageImplementation

ArchitectureSpecificUserInteraction

extension
point

CancelOption SequenceMapping

Message
text : EString
level : EnumMessageLevel

<<enumeration>>
EnumMessageLevel
INFO
WARN
ERROR

answerOptions 0..*

menuItems 0..*

externalApplication 1

resource 1

formDescription 1

follower 0..1

storage 0..1

(b)

Figure 44: Meta-model excerpts specifying more platform-independent user interaction
implementation strategies

Form Providing access to information objects is a central task for EISs (see Req. 6:
Enable information awareness). The Form implementation strategy allows to describe
such access on a generic level. The strategy gets realized through editor functionality
presented on the user’s front-end platform. The editor used by a Form strategy may allow
to modify the information, or may display information for read-only documents only. See
Sect. 9.3.1 and Sect. 9.3.4 for information access implementation strategies.

Content to present in a document is provided by a resource source access (see Sect. 9.3.1).
Depending on the type of resource access, which may, e. g., be TextAccess or XML-
Access, the document may use different GUI elements to make information objects of
different types accessible.

In complex interaction scenarios, the Form implementation strategy can be combined
with others and occur multiple times in different instantiations to implement one single

182



conceptual process-step. In cases when this is done, the mapping model entry of the
implemented process-step associates multiple implementation strategies to one conceptual
process model element, to describe the implemented process-step in more fine-grained
terms than the conceptual model.

Message A Message implementation strategy resembles a Form strategy, with the only
difference that the information objects made accessible to the user are presented in a read-
only mode. The user is intended to retrieve information from the information object, rather
than editing it.

Menu The Menu implementation strategy describes a front-end component that pro-
vides a menu, from which the user is asked to choose an item. After an item is picked, the
chosen item is remembered by the current process-step instance. It can later can be queried
to, e. g., select the subsequent process control flow using MenuItemChosen condition
implementation strategies mapped to outgoing sequences of the current process-member
(see Sect. 9.1.5).

When associated with a start-event of a modeled process, the Menu implementation strat-
egy carries the semantics of an asynchronously picked menu item, e. g., a global applica-
tion menu in the menu bar of a front-end application. The evaluation of the picked item
in the subsequent control flow happens similarly to the evaluation of results from Menu
implementation strategies.

The menu items that are intended to be available in the set of options to choose from are
specified via instances of AbstractMenuItem. This can either be a generic Menu-
Item instance, for which the code generation templates use a default menu type available
on their target architecture, or may be provided by architecture specific subclasses of the
extension point ArchitectureSpecificMenuItem.

Question With the Question implementation strategy, a generic notion of a specific
type of interaction with the user can be described. A question is considered to be composed
of the question text itself and, optionally, multiple answer options, which may describe
possible options for the user’s input. To express the notion of alternative answer options,
the AbstractMenuItem class is used again here. An instance of the Question im-
plementation strategy may simply ask for a free-text answer, indicated by the freetext
attribute set to true, but it also may make use of any set of interaction widgets that reflect
possible answer options.

WriteEMail Associating the WriteEMail implementation strategy to a process-step
means to interpret the step as a human task to write an e-mail. To realize this strategy, the
code generation templates can generate artifacts which, e. g., invoke the system’s default
e-mail browser on a user’s front-end device.

183



VisitWebsite When the VisitWebsite implementation strategy is applied, a process-
step is implemented to guide a human user in opening a web browser and pointing to a
specific address. This functionality can be realized by generated artifacts that open the
system’s default web browser.

ManualWebServiceAccess The ManualWebServiceAccess implementation
strategy leads to the invocation of a GUI for setting parameters of a specific web-service,
invoke the service manually, and read the returned results.

ManualExternalApplicationAccess With a ManualExternalApplicationAc-
cess implementation strategy, the generated EIS is advised to invoke external software
which then interacts with the user. Depending on possible interface mechanisms, the ex-
ternal software may return results to the EIS.

ManualTask The ManualTask implementation strategy is a placeholder for a human
task performed outside the software-supported functionality of the EIS. From an imple-
mentation perspective, the implementation strategy ManualTask appears as a special
case of interactive process-step. While from a conceptual point of view there is a clear
distinction between process-steps that are carried out interactively with the EIS, and man-
ual process-steps, this distinction blurs when it comes to support each class of activities
by software. Indeed, any kind of software support for tasks that are to be carried out man-
ually, needs to interact at least on a minimal scale with the user, to show what manual task
is to be performed, and to allow the user to tell the system that a manual task has been fin-
ished. At least this basic functionality must be available, otherwise the manual task would
remain unsupported. According to these considerations, from an implementation point of
view, support for manual process-steps is to be provided by an implementation strategy,
which makes use of user interaction at the front-end, and thus resembles implementation
strategies for realizing semi-automatic process-step conceptualizations.

9.1.2 Additional high-level process-member implementation strategies

Some of the interactive process-step implementation strategies are further categorized un-
der the abstract superclass AbstractProcessHighLevel. These kinds of implemen-
tation strategies can be considered to represent comparably coarse-grained pieces of func-
tionality of an application, typically represented by a main functional area of a front-end
application, such as the user-account management. The example high-level implementa-
tion strategies included in the mapping meta-model are:

• Welcome

• Login and Logout

• AdminAccounts

184



• EditMyAccount

These implementation strategy types are modeled via the meta-classes shown in Fig. 45
and described subsequently.

Question

multiple : EBoolean
freetext : EBoolean

ManualExternalApplicationAccess

EventResourceCRUD

modes : EnumCRUD

<<enumeration>>
EnumCRUD

CREATE
READ
UPDATE
DELETE

ResourceMapping

Menu

multiple : EBoolean

AbstractProcessStepHighLevel

Login Logout

AdminAccounts

ManualTask

description : EString

AbstractAutomaticProcessStepImplementation

CustomAutomatic

classname : EString

AbstractUserInteractionImplementation

description : EString

ExternalApplication

executable : EString

ArchitectureSpecificEventImplementation extension
point

EditMyAccount

Welcome

AbstractProcessMemberImplementation

name : EString

AbstractMenuItem

ArchitectureSpecificAutomaticProcessStepImplementation

ArchitectureSpecificProcessStepImplementation

Synchronizer

ManualWebServiceAccess

operation : EString
interface : EString

WriteEMail

address : EString
subject : EString

VisitWebsite

url : EString

SendEMail

to : EString
cc : EString
bcc : EString
from : EString
subject : EString
text : EString

AbstractProcessStepImplementation

AbstractEventImplementation

AbstractInteractiveProcessStepImplementation

extension
point

extension
point

MenuItem

name : EString

ArchitectureSpecificMenuItem

extension
point

EMailReceived

recipientFilter : EString
subjectFilter : EString

Automatic

SendSMS

phoneNo : EString
text : EString

Form AbstractInformationStorageImplementation

ArchitectureSpecificUserInteraction

extension
point

CancelOption SequenceMapping

Message
text : EString
level : EnumMessageLevel

<<enumeration>>
EnumMessageLevel
INFO
WARN
ERROR

answerOptions 0..*

menuItems 0..*

externalApplication 1

resource 1

formDescription 1

follower 0..1

storage 0..1

Figure 45: Meta-model excerpt specifying platform-independent high-level process-steps

Welcome The Welcome implementation strategy realizes the notion of an introductory
process-step, which shows an initial menu or piece of documentation to the user.

Login and Logout With the Login and Logout strategies, process-members of the
conceptual models can be declared to be interpreted as login or logout operations that are
explicitly mentioned in the conceptual process model.

Unlike it may initially be assumed, associating these implementation strategies to con-
ceptual process-members does not necessarily invoke the corresponding functionality of
showing a login or logout prompt at the point when the process control flow reaches this
element for a specific user. Instead, a Login implementation strategy, e. g., may also
indicate that a login must be enforced earlier in the process, or that users generally have
to authenticate before they operate the system. A Logout strategy can be interpreted by
generated artifacts in a way that the user is forced to log out from the system at this point
in the process.

AdminAccounts The AdminAccounts implementation strategy stands for a whole
block of functionality that is involved in creating and maintaining user accounts in a multi-
user system (see Req. 4: Provide multi-user support). This functionality can be prepared
to be realized by generated artifacts either by including its implementation in a runtime
framework (maybe using existing external frameworks), which simply needs to be in-
voked as a whole by generated artifacts, or by including large parts of constant artifact
descriptions for this functionality in the code generation templates.

185



EditMyAccount Comparable to the AdminAccounts implementation strategy, the
EditMyAccount strategy describes the functional area of a multi-user application,
which allows any user of the system to edit its own account’s information entries. Again,
this large piece of functionality can be prepared as an entire building block of functionality
via a runtime framework, or as fixed code in the artifact generation templates.

9.1.3 Automatic process-steps

Implementation strategies, which subclass AbstractAutomaticProcessStepIm-
plementation, are considered to run automatically without user interaction. Formu-
lating implementation strategies for this purpose resembles in identifying different ways
of invoking executable software components, e. g., a call to a web-service, or the execu-
tion of manually programmed code. In cases where the method is used for developing an
integrated application architecture on top of a middleware platform, a possible technical
realization of implementation strategies for automatic steps may also lie in configuring
application connectors [RMB01, Ver96] provided together with the middleware solution.
Examples for concrete implementation strategies of this kind are

• Synchronizer

• SendEMail

• SendSMS

• Automatic

• CustomAutomatic

Meta-classes for example implementation strategies of this type are displayed in Fig. 46.
The meta-model contains an abstract extension point class ArchitectureSpecifi-
cAutomaticProcessStepImplementation, which provides a superclass to be
inherited from when additional process-step implementation strategies are specified in an
implementation strategy meta-model to reflect specific target-architecture features.

186



Question

multiple : EBoolean
freetext : EBoolean

ManualExternalApplicationAccess

EventResourceCRUD

modes : EnumCRUD

<<enumeration>>
EnumCRUD

CREATE
READ
UPDATE
DELETE

ResourceMapping

Menu

multiple : EBoolean

AbstractProcessStepHighLevel

Login Logout

AdminAccounts

ManualTask

description : EString

AbstractAutomaticProcessStepImplementation

CustomAutomatic

classname : EString

AbstractUserInteractionImplementation

description : EString

ExternalApplication

executable : EString

ArchitectureSpecificEventImplementation extension
point

EditMyAccount

Welcome

AbstractProcessMemberImplementation

name : EString

AbstractMenuItem

ArchitectureSpecificAutomaticProcessStepImplementation

ArchitectureSpecificProcessStepImplementation

Synchronizer

ManualWebServiceAccess

operation : EString
interface : EString

WriteEMail

address : EString
subject : EString

VisitWebsite

url : EString

SendEMail

to : EString
cc : EString
bcc : EString
from : EString
subject : EString
text : EString

AbstractProcessStepImplementation

AbstractEventImplementation

AbstractInteractiveProcessStepImplementation

extension
point

extension
point

MenuItem

name : EString

ArchitectureSpecificMenuItem

extension
point

EMailReceived

recipientFilter : EString
subjectFilter : EString

Automatic

SendSMS

phoneNo : EString
text : EString

Form AbstractInformationStorageImplementation

ArchitectureSpecificUserInteraction

extension
point

CancelOption SequenceMapping

Message
text : EString
level : EnumMessageLevel

<<enumeration>>
EnumMessageLevel
INFO
WARN
ERROR

answerOptions 0..*

menuItems 0..*

externalApplication 1

resource 1

formDescription 1

follower 0..1

storage 0..1

Figure 46: Meta-model excerpt specifying platform-independent automatic process-steps

187



Synchronizer A Synchronizer is an example for a process-member implementation
strategy which can describe both implementations for process-members, as well as for
events. On either elements, this implementation strategy is to be understood as a rule on
how to handle control flows that come from multiple different ingoing sequences. If a
Synchronizer implementation strategy is attached to a process-member, the generated
execution artifacts should take care for blocking the control flow at this point until control
flow from all incoming branches, if they are active, has reached the synchronizer.

SendEMail The SendEMail implementation strategy describes a functional building
block for automatically sending e-mails by the EIS. This strategy is not to be confused with
WriteEMail, which targets to invoke an interactive e-mail editor for the user. Code gen-
eration templates for this strategy can derive information about mail recipients, the sender
name, the subject line, and, of course, the e-mail text with possible attachments, from
named information object slots and information resources attached to the corresponding
conceptual process-step. Further technical detail information, such as the mail-server ad-
dress, login credentials, the protocol used, etc., can be specified to the code generation
templates by conventional configuration files, which are global to the code generation pro-
cess and list configuration values given as contents in the models.

SendSMS Another communication channel is addresses by the SendSMS implemen-
tation strategy. It is intended to result in implementation artifacts which use appropriate
messaging channels to propagate SMS text messages to mobile phone devices.

Automatic The Automatic implementation strategy type provides a placeholder for
declaring that the implementation of the associated conceptual process step lies exclu-
sively in the responsibility of the code generation templates. This fallback strategy allows
to apply traditional code generation techniques and to by-pass the SEEM method’s no-
tion of bridging between conceptual elements and implementation artifacts by the use of
implementation strategies.

CustomAutomatic With the CustomAutomatic implementation strategy, all vari-
eties of automatic functionality can be woven into the EIS providing functionality via a
JAVA class. The runtime domain API framework provides the interface IProcessStep,
which allows to make functionality from custom-coded classes callable from the EIS. Any
JAVA class accessible on the class-path, which implements the IProcessStep inter-
face, can be specified through the meta-class CustomAutomatic’s attribute class-
name. Its execute() method will be invoked when the process control flow reaches the
point to run the implementation of the process to which the CustomAutomatic strategy
was associated. Automatic processing can the be performed by the JAVA code itself, or it
interfaces to other components by manually developed code.

188



9.1.4 Event implementation strategies

Although the mapping model blurs the conceptual distinction between process-steps and
events for implementation purposes, and allows to generally associate instances of Ab-
stractProcessMemberImplementation to either Process or Event elements,
some implementation strategies can be categorized to be primarily intended as technical
realizations for events.

Those process-member implementation strategies for events are

• EventResourceCRUD

• EMailReceived

These classes, together with abstract classes below AbstractEventImplementa-
tion, are displayed in Fig. 47.

Question

multiple : EBoolean
freetext : EBoolean

ManualExternalApplicationAccess

EventResourceCRUD

modes : EnumCRUD

<<enumeration>>
EnumCRUD

CREATE
READ
UPDATE
DELETE

ResourceMapping

Menu

multiple : EBoolean

AbstractProcessStepHighLevel

Login Logout

AdminAccounts

ManualTask

description : EString

AbstractAutomaticProcessStepImplementation

CustomAutomatic

classname : EString

AbstractUserInteractionImplementation

description : EString

ExternalApplication

executable : EString

ArchitectureSpecificEventImplementation extension
point

EditMyAccount

Welcome

AbstractProcessMemberImplementation

name : EString

AbstractMenuItem

ArchitectureSpecificAutomaticProcessStepImplementation

ArchitectureSpecificProcessStepImplementation

Synchronizer

ManualWebServiceAccess

operation : EString
interface : EString

WriteEMail

address : EString
subject : EString

VisitWebsite

url : EString

SendEMail

to : EString
cc : EString
bcc : EString
from : EString
subject : EString
text : EString

AbstractProcessStepImplementation

AbstractEventImplementation

AbstractInteractiveProcessStepImplementation

extension
point

extension
point

MenuItem

name : EString

ArchitectureSpecificMenuItem

extension
point

EMailReceived

recipientFilter : EString
subjectFilter : EString

Automatic

SendSMS

phoneNo : EString
text : EString

Form AbstractInformationStorageImplementation

ArchitectureSpecificUserInteraction

extension
point

CancelOption SequenceMapping

Message
text : EString
level : EnumMessageLevel

<<enumeration>>
EnumMessageLevel
INFO
WARN
ERROR

answerOptions 0..*

menuItems 0..*

externalApplication 1

resource 1

formDescription 1

follower 0..1

storage 0..1

Figure 47: Meta-model excerpt specifying platform-independent event implementation
strategies

EventResourceCRUD The mapping suggests one realization of this notion by the class
EventResourceCRUD, which, when associated to a conceptual start event of a process,
could provide an implementation that triggers the execution of that process once a specific
information object has been created, read, updated, or deleted.

EMailReceived The EMailReceived implementation behaves according to its name
and understands a start event of a process to be fired, when an e-mail is received on a

189



mail server. The example meta-class contains two filter attributes, which, when set, may
restrict the activity of the implementation to mails which contain the specified fragments
in the recipient mails address (filtering mails sent to specific addresses), or to mails with
specific text fragments in the subject line. In the same way as it has been suggested for
the code generation of implementing artifacts for the SendEMail strategy, further details
about the mail server configuration, i. e., the server address, used port and protocol, can be
specified to the code generation templates by global configuration files.

Several other generic event implementation strategies can be thought of and might be
added depending on development project needs, e. g., a strategy that reacts on arrival of
e-mails.

9.1.5 Sequence implementation strategies

Sequences describe the dynamics among process-members in processes. They are re-
sponsible for connecting process-members, i. e., process-steps or events, so that these
become declared as being elements in one or more process type declarations. Process-
member elements in the extracted enterprise model (EEM) representation of BPMs are
not bound to a specific process type, they can be referenced from any number of process
types to be declared as a part of it. The process instance, in which a process-member
type is instantiated, is instead determined by the the ingoing sequence which instantiates
the process-member type. Sequences are declared relative to a specific process type, their
parent process-member type set via a Sequence’s attribute parent in the EEM lan-
guage. The structure of sequences, from which process-member types are referenced, for
the process context in which instances of process-member types are instantiated.

Keeping the constitutive role of sequences for the process context in mind, it turns out
that there are multiple dimensions to the interpretation of the notion of sequences between
process-members, and for each of them an implementation strategy has to be provided.
The conceptual notion of passing the control flow to another process-member, which is
what sequences express in BPMs, has at least three orthogonal aspects that need to be
refined for implementing a mechanism that automatically supplements process execution.
These aspects are to be resolved independent from the actual execution mechanism that
will control processes, may it be an interpreting workflow engine (WfMS), or distributed
program code that handles passing of control flow explicitly.

From the conceptual BPM point of view, sequences may lead across boundaries of both
spatial distribution between systems, and diverse actor responsibilities. To provide an
implementation for sequence concepts, both aspects of either passing the control flow to a
different machine in the distributed environment, and/or passing the control flow to another
responsible role for performing the next process-step, meaning that probably a concrete
user has to be determined at runtime who fills in the requested role. A third orthogonal
dimension is the handling of conditions, under which sequence steps are taken or probably
ignored.

190



The three dimensions of sequence implementations, control flow implementation strate-
gies, condition implementation strategies, and actor resolver implementation strategies,
are focused individually in the following.

Control flow implementation strategies In a distributed environment, there are two
principal options for how a control flow between two process-member implementations
can be realized. Either the control flow points to a process-member which is to be executed
locally on the same front-end and under the same actor role’s responsibility, or the front-
end platform changes on which the next process-member implementation is to be executed.
In addition to this, a different actor role may be specified to continue interacting with the
next process-member implementation.

Continuous To specify details on how the control flow is to be implemented in the above
described cases, two default strategies are included in the meta-model, which both inherit
from the abstract superclass AbstractControlFlowImplementation. The Con-
tinuous control flow implementation strategy assumes a subsequent locally executed
process-member implementation, for the same user in the same actor role, and on the
same front-end target device. This kind of implementation strategy allows to combine
process-steps into sequences, so they can automatically be executed. Together with condi-
tion implementation strategies (see below), complex descriptions of the dynamics between
process-steps can be formally expressed, and be executed automatically by the created EIS.

ToDoList In all other cases, in which the control flow either passes to another front-
end, or another actor becomes responsible for performing, the ToDoList implementation
strategy is used. Using this way of implementing control flow, the next performing user
is determined using an actor resolving strategy (see below), and an entry is added in the
user’s to-do list on the desired target front-end. The process then stops until the user selects
this entry again from the to-do list to be performed. More sophisticated implementations
could incorporate notions of priorities or deadlines, by which the to-do list entry needs to
be performed, or immediate execution on the remote front-end could be requested, at least
as soon as the responsible user logs in.

The ToDoList implementation strategy can also optionally be applied if neither the
front-end nor the user change. This usage resembles a deferred control flow, which of-
fers the next process-step for execution in the user’s to-do list, and waits for the user to
decide when to continue the process.

Fig. 48 shows the meta-model’s sub-structure which includes the control flow implemen-
tation strategy meta-classes.

191



AbstractControlFlowImplementation

Continuous

ArchitectureSpecificControlFlowImplementation extension
point

ToDoList

Figure 48: Meta-model specifying platform-independent control flow implementation
strategies

Actor resolver implementation strategies In those cases, where a sequence’s control
flow is specified to continue with a process-member, for which a different actor or user
is responsible than for the previous process-step, the way of how to change to another
user must be described in detail. When an actor-role is associated to a process-step on the
process type level, it is implicitly assumed that during the execution of the process, there
will be a concrete person who fulfills the actor-role. For the implementation of an EIS,
methodical means are required to specify implementation strategies of how to retrieve a
concrete person, e. g., identified by a user-account, to fulfill a given actor role. Multi-
ple options are possible here, which are expressed by concrete subclasses of the abstract
superclass AbstractActorResolverImplementation. The model suggests the
following strategies:

• SameUser

• MatchingUser

• FixedUser

• ChooseUser

These strategies are further described below, their declaration in the meta-model is visual-
ized in Fig. 49.

192



AbstractActorResolverImplementation

name : EString

MatchingUser

FixedUser

ArchitectureSpecificActorResolverImplementation extension
point

SameUser

ChooseUser

ActorMapping

actorMappings 0..*

Figure 49: Meta-model excerpt specifying platform-independent implementation strate-
gies for actor resolvers

SameUser The SameUser implementation strategy is the trivial strategy, which ex-
presses that no change in user-to-actor assignments take place before continuing with the
next process-step.

MatchingUser When the MatchingUser implementation strategy is applied, an algo-
rithm picks a concrete user who fulfills the requested actor role. This may be done based
on information derived from the organizational perspective of the underlying enterprise
models given at modeling time, and from runtime information in user databases. Option-
ally, the applied algorithm may judge its decision based on current work load balances
from the individual users, and may prefer to choose users who fulfill the requested role,
who currently have less estimated workload to do. Depending on the engineering project,
other more sophisticated implementation strategies may be developed.

193



FixedUser The FixedUser strategy describes the simple case that a concrete person’s
user-account is invariantly associated to a conceptual actor roles. This may be applied for
singleton actor-roles.

ChooseUser As an alternative to automatic determination of a concrete user, a match-
ing user may also be picked manually from a list of those known users who fulfill the
requested actors role, or multiple roles, for the subsequent process-step. This implemen-
tation strategy is expressed by the ChooseUser meta-class. To implement this mode of
actor resolving, an EIS front-end provides GUI components that let the current user choose
the desired next user. More elaborate implementations may allow to specify, if someone
else but the current user is in charge to take the decision who is to fulfill the requested
actor role. An implementation for this could build upon information from advanced orga-
nization models included in the set of enterprise models, e. g., a ’responsible, accountable,
consulted, informed’ (RACI) matrix [BD09], which specifies stakeholder responsibilities.
Such detail models may be consulted, for instance, to create mechanisms for delegating
the choice to responsible actors in a higher management layer.

Condition implementation strategies A third dimension of implementing sequences,
which has to be underfed with an implementation description, is the handling of optional
control flow branches, which may be constrained by conditions to be evaluated at runtime.
The corresponding implementation strategies are expressed as subclasses of Abstract-
ConditionImplementation, and may realize any kind of boolean function. Among
the example condition implementations are tests for given answer options of previously
asked questions, described by the meta-class AnswerGiven, or selected menu items in
Menu processes, specified via instances of MenuItemChosen. Lower-level abstractions
such as string value comparisons or manually provided code in the target architecture
programming language are also available, using the meta-classes ResultCompare and
CustomCondition, respectively. The meta-model also includes composite implemen-
tation strategies to express the boolean operators AND, OR and NOT.

The meta-classes for condition implementation strategies are shown in Fig. 50.

194



AbstractConditionImplementation

name : EString

ResultCompare

compare : EnumCompareMode
value : EString

Menu

ArchitectureSpecificConditionImplementation
extension
point

AND OR

NOT

AbstractComposedConditionImplementation

AbstractReflexiveConditionImplementation

MenuItemChosen

<<enumeration>>
EnumCompareMode

AbstractMenuItem

CustomCondition

code : EString

CancelOptionChosen

FormSubmitted Form

subconditions2..*

subcondition1

menuItems 0..*

menuItem 1

form 1

Figure 50: Meta-model specifying platform-independent implementation strategies for
conditions

195



9.2 Implementation strategies for actors

In Sect. 6.2.2, strategies for picking a suitable concrete actor, when another actor role is
requested by the business process description to continue performing a process, have been
discussed. These strategies assume that a mechanism exists, which associates a list of
concrete persons to actor roles they can fulfill. The details on how this list is determined
per actor role are explicated using actor implementation strategies, specified by subclasses
of the meta-class AbstractActorImplementation. The concrete subclasses of this
class, as suggested by the meta-model, are based on a traditional user account management
as it is realized by common operating systems or other infrastructural components, such as,
e. g., database management systems. The idea is to explicate the notion of what an actor
is by implementation constructs such as user accounts and user groups. In addition, two
generic role implementations are included, one for anonymous users, i. e., everybody who
is unauthenticated, and one for the role of an administrator, which is a traditional concept
in multi-user systems that has unrestricted access to all functional areas of a software
system.

According to this traditional notion of user identification, concrete strategies suggested by
the meta-model are Anonymous, UserGroup, UserAccount and Administra-
tor.

Fig. 51 shows example declarations in the meta-model for implementation strategies of
this type, together with an extension point class for target-architecture specific extensions.

196



AbstractActorImplementation

Anonymous

UserGroup

name : EString

UserAccount

name : EString

Administrator

ArchitectureSpecificActorImplementation
extension
point

Figure 51: Meta-model excerpt specifying platform-independent implementation strate-
gies for actors

9.3 Resource implementation strategies

Resource implementation strategies play a relevant role for EIS development. Especially
information resources are relevant concepts to realize the functionality of an EIS, because
it is one core task of EIS to provide efficient access to shared information resources of the
organization (see Req. 6: Enable information awareness).

197



Another kind of resources relevant from an EIS implementation perspective, are software
resources, which describe external software components to be integrated by the EIS. EISs
are responsible for integrating heterogeneous system components to form a coherent and
efficiently usable whole (see Req. 3: Support distributed and heterogeneous architectures),
this is why access to external software components is a core area of functionality to EIS.

All other kinds of resources are initially subsumed under physical resources from the
software system’s perspective, which means that they do not have an representation in
the software system, besides a human-readable description text. Refinements of this no-
tion can be made depending on project specific needs of an organization. There may be
kinds of resources specially suited for being reflected by software, used in organization-
specific process-steps for which project-specific process implementation strategies are im-
plemented. In this case, additional concrete resource implementations can be added to
the meta-model as subclasses of either AbstractResourceImplementation, or be
incorporated in a project-specific implementation strategy model by subclassing Archi-
tectureSpecificResourceImplementation. It is then up to the code genera-
tion templates and the project-specific process-step implementations to handle the software
representation of this resource type accordingly.

To formally express the basic distinctions between the three initially provided kinds of
resources, the meta-model includes the abstract superclasses

• AbstractInformationResourceImplementation

• AbstractSoftwareResourceImplementation

• AbstractPhysicalResourceImplementation

Concrete implementation strategies to realize these three kinds of resources are illustrated
in the following.

9.3.1 Information resource implementation strategies

Concrete subclasses of AbstractInformationResourceImplementation ex-
press strategies that explain how conceptually specified information resources are reflected
as data types and data storages in a software system. To give the required detail informa-
tion, two kinds of implementation strategies are associated with an information resource,
which cover both how to formally describe information objects types as data types, and
how to persistently store information objects as data. The notion of an information object
instance does not need to be explicated, it is implicitly and invariantly provided by the
notion of data in the underlying execution mechanism that will run the EIS, may it be a
high-level interpretation mechanism such as, e. g., a workflow engine, or a programming
language with its execution model.

The first dimension of the implementation of an information resource is a formalized de-
scription of the information resource’s type. Such descriptions are given by formal type

198



description mechanisms, of which many have evolved in the history of software develop-
ment, e. g., data types in object-oriented programming languages, database schema defi-
nition languages, or XML schema descriptions. Since there are several ways to explicate
data types in software systems, a subclass of AbstractInformationResourceIm-
plementation is AbstractInformationTypeImplementation, the concrete
subclasses of which allow to specify data type descriptions in diverse implementation vari-
ants. The concrete implementation strategies for data types included in the mapping model
are

A ResourceMapping entry can contain references to both kinds of implementation
strategies via the multi-valued implementations association, which allows to specify
both semantic dimensions of the type and the storage of an information resource.

Information type implementation strategies Three information type implementation
strategies are exemplified in the meta-model. This list of available strategies can, how-
ever, be extended with representations of any type-specification mechanism that exists in
software developing, if additional type implementations are required in an engineering
project.

The type implementation strategies initially suggested by the meta-model are Text-
InformationType, XMLInformationType and ExternalDocumentInfor-
mationType. The text information type is used for unstructured string data.

XML types are specified by making use of the XML Schema type description language
[vdV02]. The type description document of an XML Schema description, which itself is
an XML information object, is reflexively referenced as XML information resource via
the schemaResource association of the XMLInformationType meta-class. This
way, it can either be specified inside the mapping model as a literal information object
using an instance of LiteralInformationObject, or be included from an external
file URI via a FileInformationStorage or a URIInformationStorage, as it
is typically desired to access third-party XML schema declarations or type-descriptions
from a central schema repository (see below on information storages).

Information resource types which are interpreted as instances of ExternalDocument-
InformationType, are considered to be handled externally by other software com-
ponents. From the EIS perspective, the artifacts storing to these information objects are
binary large objects (BLOBs) with an unknown internal structure. Examples for infor-
mation resources realized with such a type description are MICROSOFT WORD® docu-
ments. When using such documents as realizations of information resources, the WORD
application is configured as an external editor application, which will be invoked by the
corresponding Form or Message process-steps.

The hierarchy of meta-class below the abstract AbstractInformationResource-
Implementation meta-class is displayed in Fig. 52.

199



AbstractResourceImplementation

name : EString

AbstractPhysicalResourceImplementation

AbstractInformationTypeImplementation

AbstractInformationStorageImplementation

LiteralInformationStorage

value : EString

FileInformationStorage

Þlename : EString

AbstractResourceAccessImplementation

name : EString
multiple : EBoolean

ArchitectureSpecificInformationStorage

PhysicalResourceDescription

physicalLocation : EString

TextInformationType

XMLInformationType

ExternalDocumentInformationType

ÞlenameExtension : EString

URIInformationStorage

uri : EString

AbstractSoftwareResourceImplementation

ArchitectureSpecificSoftwareResource

ExternalApplication

executable : EString

extension
point

ArchitectureSpecificInformationType

AbstractInformationObjectAccessImplementation

variable : EString
mode : EnumCRUD

AbstractPhysicalResourceAccess

ArchitectureSpecificResourceAccess extension
point

AbstractSoftwareResourceAccess

ArchitectureSpecificSoftwareResourceAccess
extension
point

extension
point

WebService

wsdlURL : EString

CustomResource

classname : EString

XMLAccess XMLAccessById

id : EString

XMLTransformation

extension
point

TextAccess

literal : EString

AbstractInformationResourceImplementation

AbstractProcessMemberImplementation

AbstractXMLAccess

xpath : EString

ArchitectureSpecificInformationObjectAccess

extension
point

ExternalDocumentAccess

ResourceMapping

type1

schemaStorage0..1

externalEditorApplication0..1

defaultContent

0..1

instancesStorage0..1

xsltStorage0..1

resourceAccessSources0..*

resourceAccessTargets0..*

descriptionStorage0..1

resourceMapping0..1

Figure 52: Meta-model excerpt specifying platform-independent information types

Information storage implementation strategies There is a second aspect to the specifi-
cation of implementation details about information resources, which declares the way how
instances of data types are stored. There are diverse ways for software systems to make
data persistent, the concrete subclasses of the AbstractInformationStorageIm-
plementation represent alternative implementation options which get accordingly re-
solved by the code generation templates.

Examples of information storage implementation strategy types given in the mapping
meta-model are

200



• URIInformationStorage

• FileInformationStorage

• and LiteralInformationStorage

The meta-classes describing possible information storage implementations are shown in
Fig. 53.

AbstractResourceImplementation

name : EString

AbstractPhysicalResourceImplementation

AbstractInformationTypeImplementation

AbstractInformationStorageImplementation

LiteralInformationStorage

value : EString

FileInformationStorage

Þlename : EString

AbstractResourceAccessImplementation

name : EString
multiple : EBoolean

ArchitectureSpecificInformationStorage

PhysicalResourceDescription

physicalLocation : EString

TextInformationType

XMLInformationType

ExternalDocumentInformationType

ÞlenameExtension : EString

URIInformationStorage

uri : EString

AbstractSoftwareResourceImplementation

ArchitectureSpecificSoftwareResource

ExternalApplication

executable : EString

extension
point

ArchitectureSpecificInformationType

AbstractInformationObjectAccessImplementation

variable : EString
mode : EnumCRUD

AbstractPhysicalResourceAccess

ArchitectureSpecificResourceAccess extension
point

AbstractSoftwareResourceAccess

ArchitectureSpecificSoftwareResourceAccess
extension
point

extension
point

WebService

wsdlURL : EString

CustomResource

classname : EString

XMLAccess XMLAccessById

id : EString

XMLTransformation

extension
point

TextAccess

literal : EString

AbstractInformationResourceImplementation

AbstractProcessMemberImplementation

AbstractXMLAccess

xpath : EString

ArchitectureSpecificInformationObjectAccess

extension
point

ExternalDocumentAccess

ResourceMapping

type1

schemaStorage0..1

externalEditorApplication0..1

defaultContent

0..1

instancesStorage0..1

xsltStorage0..1

resourceAccessSources0..*

resourceAccessTargets0..*

descriptionStorage0..1

resourceMapping0..1

Figure 53: Meta-model excerpt specifying platform-independent information storage im-
plementation strategies

URIInformationStorage A URIInformationStorage is described via a uniform
resource identifier (URI) string, which may locate an artifact resource on the internet, or
through any locally resolvable access scheme. The URIInformationStorage strat-
egy may provide read-only resources only, for which case the validity checking conditions
of the mapping model may contain a rule to ensure resource source accesses only (see
Sect. 9.3.4).

201



FileInformationStorage The FileInformationStorage implementation strategy
advises the code generation templates to operate with artifacts stored on a local file system.

LiteralInformationStorage The LiteralInformationStorage implementation
strategy represents not a regular persistent storage, but allows to incorporate literal infor-
mation object values into the model. By their constant nature, this kind of storage can only
be involved in read accesses, implemented by information source access implementation
strategies as described below.

The list of available information storage implementation strategies can be extended by
other technical means to make data persistent, e. g., by introducing the concept of a re-
lational database, with corresponding resource access implementation strategies, such as
SQL queries, and according data type implementation strategies, to express data in terms
of table column definitions. The abstract implementation strategy concepts of the method
are expressed on an abstraction level high enough to include either traditional database
techniques, or prospectively new approaches for storing and retrieving data that are yet not
available.

9.3.2 Software resource implementation strategies

Software resources in the conceptual enterprise models represent any kind of software
system external to the EIS, and, since enterprise models are taking in a birds eye view
on the entire organization, also the EIS itself may be represented as a software resource
in enterprise models. Subclasses of AbstractSoftwareResourceImplementa-
tion allow to specify concrete implementation details about how to interpret conceptually
specified software resources.

The meta-model comes with three example implementation strategies for external software
resources. These are the concrete implementation strategy classes ExternalApplica-
tion, WebService and CustomResource.

ExternalApplication An ExternalApplication component is considered to be
callable on the user’s front-end system via a traditional shell command. The code genera-
tion templates take care to realize according invocation code.

WebService A WebService implementation strategy marks a conceptual software re-
source to be interpreted as a web-service. The mechanism for invoking web-services is
standardized in the context of SOA technology frameworks, and the code generation tem-
plates can rely on existing web-service frameworks for implementing the actual service
invocation behavior in an artifact.

CustomResource All other kinds of software resources are intended to be subsumed un-
der the CustomResource meta-class. When resolving the implementation for instances
of this implementation strategy type, the decision about which invocation mechanism to

202



use is not stated in the mapping model, but is deferred to manually developed code, which
either is invoked as wrapper to delegate to an external component, or implements desired
functionality directly.

Instead of using a CustomResource implementation strategy, the meta-model may be
extended by organization-specific software resource types, which explicitly describe addi-
tional external software types and corresponding invocation mechanisms.

A reflexive representation of the EIS is not required in the mapping model, which itself
is already a description of the EIS in abstract technical terms. Consequently, resources
which denote the EIS itself may remain without mapping entry, or may occur with an
empty set of implementation strategies in the mapping model. Of course, the conceptual
information of which process-members are explicitly modeled to access the EIS as a soft-
ware resource is not lost this way, it remains included in the conceptual EEM enterprise
model representation, and can be queried for semantic analysis when required.

The available implementation strategy types for interfacing with software components are
shown in Fig. 54.

203



AbstractResourceImplementation

name : EString

AbstractPhysicalResourceImplementation

AbstractInformationTypeImplementation

AbstractInformationStorageImplementation

LiteralInformationStorage

value : EString

FileInformationStorage

Þlename : EString

AbstractResourceAccessImplementation

name : EString
multiple : EBoolean

ArchitectureSpecificInformationStorage

PhysicalResourceDescription

physicalLocation : EString

TextInformationType

XMLInformationType

ExternalDocumentInformationType

ÞlenameExtension : EString

URIInformationStorage

uri : EString

AbstractSoftwareResourceImplementation

ArchitectureSpecificSoftwareResource

ExternalApplication

executable : EString

extension
point

ArchitectureSpecificInformationType

AbstractInformationObjectAccessImplementation

variable : EString
mode : EnumCRUD

AbstractPhysicalResourceAccess

ArchitectureSpecificResourceAccess extension
point

AbstractSoftwareResourceAccess

ArchitectureSpecificSoftwareResourceAccess
extension
point

extension
point

WebService

wsdlURL : EString

CustomResource

classname : EString

XMLAccess XMLAccessById

id : EString

XMLTransformation

extension
point

TextAccess

literal : EString

AbstractInformationResourceImplementation

AbstractProcessMemberImplementation

AbstractXMLAccess

xpath : EString

ArchitectureSpecificInformationObjectAccess

extension
point

ExternalDocumentAccess

ResourceMapping

type1

schemaStorage0..1

externalEditorApplication0..1

defaultContent

0..1

instancesStorage0..1

xsltStorage0..1

resourceAccessSources0..*

resourceAccessTargets0..*

descriptionStorage0..1

resourceMapping0..1

Figure 54: Meta-model excerpt specifying platform-independent software resource imple-
mentation strategies

9.3.3 Physical resource implementation strategies

For the abstract superclass AbstractPhysicalResourceImplementation, there
is only one concrete example implementation strategy, which is PhysicalResource-
Description. This meta-class is intentionally named to not end in “Implementation”
but “Description”, because the mapping model assumes that physical resources cannot be
implemented at all by a software system, and that the only representation of a physical re-
source in an EIS can be given by a description. This description is modeled to be stored by
a AbstractInformationStorageImplementation, which in turn allows to ap-
ply any information object type and appropriate storage mechanisms to hold the resource
description, ranging from unstructured text strings stored internally by the EIS, over struc-
tured XML documents with corresponding form GUIs, to external document edited by
external editor applications.

204



The meta-classes describing physical resource implementations in the explained sense are
shown in Fig. 55.

AbstractResourceImplementation

name : EString

AbstractPhysicalResourceImplementation

AbstractInformationTypeImplementation

AbstractInformationStorageImplementation

LiteralInformationStorage

value : EString

FileInformationStorage

Þlename : EString

AbstractResourceAccessImplementation

name : EString
multiple : EBoolean

ArchitectureSpecificInformationStorage

PhysicalResourceDescription

physicalLocation : EString

TextInformationType

XMLInformationType

ExternalDocumentInformationType

ÞlenameExtension : EString

URIInformationStorage

uri : EString

AbstractSoftwareResourceImplementation

ArchitectureSpecificSoftwareResource

ExternalApplication

executable : EString

extension
point

ArchitectureSpecificInformationType

AbstractInformationObjectAccessImplementation

variable : EString
mode : EnumCRUD

AbstractPhysicalResourceAccess

ArchitectureSpecificResourceAccess extension
point

AbstractSoftwareResourceAccess

ArchitectureSpecificSoftwareResourceAccess
extension
point

extension
point

WebService

wsdlURL : EString

CustomResource

classname : EString

XMLAccess XMLAccessById

id : EString

XMLTransformation

extension
point

TextAccess

literal : EString

AbstractInformationResourceImplementation

AbstractProcessMemberImplementation

AbstractXMLAccess

xpath : EString

ArchitectureSpecificInformationObjectAccess

extension
point

ExternalDocumentAccess

ResourceMapping

type1

schemaStorage0..1

externalEditorApplication0..1

defaultContent

0..1

instancesStorage0..1

xsltStorage0..1

resourceAccessSources0..*

resourceAccessTargets0..*

descriptionStorage0..1

resourceMapping0..1

Figure 55: Meta-model excerpt specifying the physical resource implementation strategy

9.3.4 Resource access implementation strategies

Another aspect of providing the software implementation for resource handling in an EIS
is concerned with accesses to resources. Strategies for realizing resource accesses are
closely related to resource implementation strategies, and add additional orthogonal as-
pects to resource implementations regarding the dynamics, with which resource accesses
are performed in a process.

The basic pattern of a resource access is performed, while a process-step is executed,
which accesses that resource. It consists of a sequence of retrieve actions before the
process-step is executed, and optionally a sequence of store actions after the process-step
is executed. This general pattern of resource retrieve-and-store accesses around a single
process-step can be observed even for manually performed process-steps with manual ac-
cess to physical resources: before a process-step is executed, the required resources are
retrieved (if they are not at hand already from previous process-steps), and after a process-
step, possibly modified resources are brought back into place (or kept in reach for further
process-steps to come). The sets of resources that are retrieved and stored by these ac-
cesses need not necessarily be the same, because some resource might not need to be
stored back again, e. g., physical resources that are consumed by the process-step, or in-
formation resources that are only accessed for reading. Others may be created throughout
the process-step, and be stored without having been retrieved beforehand.

The basic pattern of an AbstractProcessMemberImplementation strategy refer-
encing any number of possible AbstractResourceAccessSourceImplementa-
tion, and any number of AbstractResourceAccessTargetImplementation
strategies, is shown in Fig. 56.

205



Question

multiple : EBoolean
freetext : EBoolean

ManualExternalApplicationAccess

EventResourceCRUD

modes : EnumCRUD

<<enumeration>>
EnumCRUD

CREATE
READ
UPDATE
DELETE

ResourceMapping

Menu

multiple : EBoolean

AbstractProcessStepHighLevel

Login Logout

AdminAccounts

ManualTask

description : EString

AbstractAutomaticProcessStepImplementation

CustomAutomatic

classname : EString

AbstractUserInteractionImplementation

description : EString

ExternalApplication

executable : EString

ArchitectureSpecificEventImplementation extension
point

EditMyAccount

Welcome

AbstractProcessMemberImplementation

name : EString

AbstractMenuItem

ArchitectureSpecificAutomaticProcessStepImplementation

ArchitectureSpecificProcessStepImplementation

Synchronizer

ManualWebServiceAccess

operation : EString
interface : EString

WriteEMail

address : EString
subject : EString

VisitWebsite

url : EString

SendEMail

to : EString
cc : EString
bcc : EString
from : EString
subject : EString
text : EString

AbstractProcessStepImplementation

AbstractEventImplementation

AbstractInteractiveProcessStepImplementation

extension
point

extension
point

MenuItem

name : EString

ArchitectureSpecificMenuItem

extension
point

EMailReceived

recipientFilter : EString
subjectFilter : EString

Automatic

SendSMS

phoneNo : EString
text : EString

Form AbstractInformationStorageImplementation

ArchitectureSpecificUserInteraction

extension
point

CancelOption SequenceMapping

Message
text : EString
level : EnumMessageLevel

<<enumeration>>
EnumMessageLevel
INFO
WARN
ERROR

answerOptions 0..*

menuItems 0..*

externalApplication 1

resource 1

formDescription 1

follower 0..1

storage 0..1

Figure 56: Meta-model excerpt showing the basic pattern of an AbstractProcess-
MemberImplementation strategy referencing resource source and resource target ac-
cesses

The terminology of the meta-model speaks of “source accesses” when a resource is re-
trieved, and “target accesses” when a resource is stored. Corresponding abstract super-
classes which express this distinction, and partially refine it for accesses on information
resources, are

• AbstractResourceAccessImplementation

• AbstractResourceAccessSourceImplementation

• AbstractResourceAccessTargetImplementation

• AbstractInformationObjectAccessSourceImplementation

• AbstractInformationObjectAccessTargetImplementation

• AbstractStorableInformationObjectAccessImplementation

The meta-class AbstractResourceAccessImplementation is the top-most su-
perclass to categorize its subclasses as specifying resource access implementation strate-
gies. It carries no specific semantics besides this categorizing function. The other classes
distinguish between source accesses and target accesses, and the last two refine this notion
with regard to access to information object resources. Concrete subclasses can choose to
implement either of the access directions, or provide an implementation strategy for both
directions using multiple inheritance from both kind of abstract superclasses.

With the AbstractInformationObjectAccessImplementation meta-class,
the notion of accessing an information object that can persistently be stored with the use
of an AbstractInformationStorageImplementation strategy is expressed.
The meta-model provides first sketches for concrete, genericially applicable, resource ac-
cess implementation strategies. For text information resources, the meta-classes Text-
Create, TextRetrieve, TextStore, and TextDelete are provided. Accesses

206



to XML information resources are described by the meta-classes XMLAccess, XML-
AccessById, and XMLTransformation, which inherit from the refined abstract su-
perclasses AbstractXMLAccess.

Implementation strategies for resource accesses to other types of information objects
are not contained in the meta-model, except the generic ExternalDocumentAccess
strategy, which combines the notion of a source access and target access by means of an
external editor.

More elaborate implementation strategies, than the examples given here, could describe
how information access is handled by a process-step with richer semantics. One way
to semantically characterizing information access in greater depth, can be derived from
distinctions of data access modes in information systems. These distinguish between four
modes of data accesses in information systems [WMB+03]:

• access to master data, which typically is not changed frequently, once created

• access to transaction data, e. g., the in- and out-flows of goods or money

• access to transfer data, which denotes technical data intermediately used to commu-
nicate between software components

• and, access to preliminary data, which, by the semantics of the process, only has a
limited lifetime in the process

Depending on these characterizations, different concrete implementations for handling in-
formation objects represented as data can be chosen by code generation templates, when
generating executable artifacts from the mapping model and its referenced models.

Fig. 57 shows the meta-classes that are involved in specifying storable information object
access implementation strategies.

For completeness, the meta-model also mentions an abstract class AbstractSoftwar-
eResourceAccess, which can be utilized to categorize implementation strategies for
how to access software resources. However, no concrete subclasses expressing a notion
of accessing software resources are included as examples. The notion of a software re-
source implementation is already closely connected to the way how the software resource
is accessed, in terms of invoking executable functionality on an external (or manually
developed internal) software component. With the refinements offered by the available
software resource implementation strategies, the code generation templates thus already
have enough information to create executable artifacts handling the software resource ac-
cesses. A more detailed specification of access to software resources does not need to be
modeled.

It has already been argued that physical resources usually cannot be reflected through soft-
ware other than by giving a description of the resource (see Sect. 9.3.3). Accordingly,
access to physical resources does not require software implementation strategies, since the
access happens outside the software system. However, to keep the method open to also
refine a notion of access to physical resources if required, there are abstract superclasses,

207



which act as extension points for possible enhancements of the mapping language with a
more in-depth notion of physical resources. The categorizing abstract superclass marking
physical resource accesses is AbstractPhysicalResourceAccess, the meta-class
ArchitectureSpecificPhysicalResourceAccess provides an explicit exten-
sion point for these semantics.

To generally extend the notion of resource accesses with architecture specific implementa-
tion strategies, the generic extension point ArchitectureSpecificResourceAc-
cess is finally also part of the meta-model.

Fig. 58 gives a comprehensive overview an all meta-classes involved in refining resource
implementation strategies and resource access implementation strategies, as they have
been presented in this section.

208



Question

multiple : EBoolean
freetext : EBoolean

ManualExternalApplicationAccess

EventResourceCRUD

modes : EnumCRUD

<<enumeration>>
EnumCRUD

CREATE
READ
UPDATE
DELETE

ResourceMapping

Menu

multiple : EBoolean

AbstractProcessStepHighLevel

Login Logout

AdminAccounts

ManualTask

description : EString

AbstractAutomaticProcessStepImplementation

CustomAutomatic

classname : EString

AbstractUserInteractionImplementation

description : EString

ExternalApplication

executable : EString

ArchitectureSpecificEventImplementation extension
point

EditMyAccount

Welcome

AbstractProcessMemberImplementation

name : EString

AbstractMenuItem

ArchitectureSpecificAutomaticProcessStepImplementation

ArchitectureSpecificProcessStepImplementation

Synchronizer

ManualWebServiceAccess

operation : EString
interface : EString

WriteEMail

address : EString
subject : EString

VisitWebsite

url : EString

SendEMail

to : EString
cc : EString
bcc : EString
from : EString
subject : EString
text : EString

AbstractProcessStepImplementation

AbstractEventImplementation

AbstractInteractiveProcessStepImplementation

extension
point

extension
point

MenuItem

name : EString

ArchitectureSpecificMenuItem

extension
point

EMailReceived

recipientFilter : EString
subjectFilter : EString

Automatic

SendSMS

phoneNo : EString
text : EString

Form AbstractInformationStorageImplementation

ArchitectureSpecificUserInteraction

extension
point

CancelOption SequenceMapping

Message
text : EString
level : EnumMessageLevel

<<enumeration>>
EnumMessageLevel
INFO
WARN
ERROR

answerOptions 0..*

menuItems 0..*

externalApplication 1

resource 1

formDescription 1

follower 0..1

storage 0..1

Figure 42: Entire meta-model specifying platform-independent implementation strategies
for process-members

209



A
bs
tr
ac
tR
es
ou
rc
eI
m
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g A
bs
tr
ac
tP
hy
si
ca
lR
es
ou
rc
eI
m
pl
em

en
ta
ti
on

A
bs
tr
ac
tI
nf
or
m
at
io
nT
yp
eI
m
pl
em

en
ta
ti
on

A
bs
tr
ac
tI
nf
or
m
at
io
nS
to
ra
ge
Im
pl
em

en
ta
ti
on

Li
te

ra
lIn

fo
rm

at
io

n
St

o
ra

g
e

va
lu

e 
: E

St
ri

n
g

Fi
le

In
fo

rm
at

io
n

St
o

ra
g

e

Þ
le

n
am

e 
: E

St
ri

n
g

A
bs
tr
ac
tR
es
ou
rc
eA
cc
es
sI
m
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

m
u

lt
ip

le
 : 

E
B

o
o

le
an

A
rc
hi
te
ct
ur
eS
pe
ci
fi
cI
nf
or
m
at
io
nS
to
ra
ge

P
hy

si
ca

lR
es

o
u

rc
eD

es
cr

ip
ti

o
n

p
hy

si
ca

lL
o

ca
ti

o
n

 : 
E

St
ri

n
gTe

xt
In

fo
rm

at
io

n
Ty

p
e

X
M

LI
n

fo
rm

at
io

n
Ty

p
e

E
xt

er
n

al
D

o
cu

m
en

tI
n

fo
rm

at
io

n
Ty

p
e

Þ
le

n
am

eE
xt

en
si

o
n

 : 
E

St
ri

n
g

U
R

IIn
fo

rm
at

io
n

St
o

ra
g

e

u
ri

 : 
E

St
ri

n
g

A
bs
tr
ac
tS
of
tw
ar
eR
es
ou
rc
eI
m
pl
em

en
ta
ti
on

A
rc
hi
te
ct
ur
eS
pe
ci
fi
cS
of
tw
ar
eR
es
ou
rc
e

E
xt

er
n

al
A

p
p

lic
at

io
n

ex
ec

u
ta

b
le

 : 
E

St
ri

n
g

ex
te

n
si

o
n

p
o

in
t

A
rc
hi
te
ct
ur
eS
pe
ci
fi
cI
nf
or
m
at
io
nT
yp
e

A
bs
tr
ac
tI
nf
or
m
at
io
nO

bj
ec
tA
cc
es
sI
m
pl
em

en
ta
ti
on

va
ri

ab
le

 : 
E

St
ri

n
g

m
o

d
e 

: E
n

u
m

C
R

U
D

A
bs
tr
ac
tP
hy
si
ca
lR
es
ou
rc
eA
cc
es
s

A
rc
hi
te
ct
ur
eS
pe
ci
fi
cR
es
ou
rc
eA
cc
es
s

ex
te

n
si

o
n

p
o

in
t

A
bs
tr
ac
tS
of
tw
ar
eR
es
ou
rc
eA
cc
es
s

A
rc
hi
te
ct
ur
eS
pe
ci
fi
cS
of
tw
ar
eR
es
ou
rc
eA
cc
es
s

ex
te

n
si

o
n

p
o

in
t

ex
te

n
si

o
n

p
o

in
t

W
eb

Se
rv

ic
e

w
sd

lU
R

L 
: E

St
ri

n
g

C
u

st
o

m
R

es
o

u
rc

e

cl
as

sn
am

e 
: E

St
ri

n
g

X
M

LA
cc

es
s

X
M

LA
cc

es
sB

yI
d

id
 : 

E
St

ri
n

g

X
M

LT
ra

n
sf

o
rm

at
io

n

ex
te

n
si

o
n

p
o

in
t

Te
xt

A
cc

es
s

lit
er

al
 : 

E
St

ri
n

g

A
bs
tr
ac
tI
nf
or
m
at
io
nR
es
ou
rc
eI
m
pl
em

en
ta
ti
on

A
bs
tr
ac
tP
ro
ce
ss
M
em

be
rI
m
pl
em

en
ta
ti
on

A
bs
tr
ac
tX
M
LA
cc
es
s

xp
at

h
 : 

E
St

ri
n

g

A
rc
hi
te
ct
ur
eS
pe
ci
fi
cI
nf
or
m
at
io
nO

bj
ec
tA
cc
es
s

ex
te

n
si

o
n

p
o

in
t

E
xt

er
n

al
D

o
cu

m
en

tA
cc

es
s

R
es

o
u

rc
eM

ap
p

in
g

ty
p

e
1

sc
h

em
aS

to
ra

g
e

0
..1

ex
te

rn
al

Ed
it

o
rA

p
p

lic
at

io
n

0
..1

d
ef

au
lt

C
o

n
te

n
t

0
..1

in
st

an
ce

sS
to

ra
g

e
0

..1

xs
lt

St
o

ra
g

e
0

..1

re
so

u
rc

eA
cc

es
sS

o
u

rc
es

0
..*

re
so

u
rc

eA
cc

es
sT

ar
g

et
s

0
..*

d
es

cr
ip

ti
o

n
St

o
ra

g
e

0
..1

re
so

u
rc

eM
ap

p
in

g
0

..1

Fi
gu

re
57

:M
et

a-
m

od
el

ex
ce

rp
ts

pe
ci

fy
in

g
pl

at
fo

rm
-i

nd
ep

en
de

nt
st

or
ab

le
in

fo
rm

at
io

n
ob

je
ct

ac
ce

ss
im

pl
em

en
ta

tio
n

st
ra

te
gi

es

210



AbstractResourceImplementation

name : EString

AbstractPhysicalResourceImplementation

AbstractInformationTypeImplementation

AbstractInformationStorageImplementation

LiteralInformationStorage

value : EString

FileInformationStorage

Þlename : EString

AbstractResourceAccessImplementation

name : EString
multiple : EBoolean

ArchitectureSpecificInformationStorage

PhysicalResourceDescription

physicalLocation : EString

TextInformationType

XMLInformationType

ExternalDocumentInformationType

ÞlenameExtension : EString

URIInformationStorage

uri : EString

AbstractSoftwareResourceImplementation

ArchitectureSpecificSoftwareResource

ExternalApplication

executable : EString

extension
point

ArchitectureSpecificInformationType

AbstractInformationObjectAccessImplementation

variable : EString
mode : EnumCRUD

AbstractPhysicalResourceAccess

ArchitectureSpecificResourceAccess extension
point

AbstractSoftwareResourceAccess

ArchitectureSpecificSoftwareResourceAccess
extension
point

extension
point

WebService

wsdlURL : EString

CustomResource

classname : EString

XMLAccess XMLAccessById

id : EString

XMLTransformation

extension
point

TextAccess

literal : EString

AbstractInformationResourceImplementation

AbstractProcessMemberImplementation

AbstractXMLAccess

xpath : EString

ArchitectureSpecificInformationObjectAccess

extension
point

ExternalDocumentAccess

ResourceMapping

type1

schemaStorage0..1

externalEditorApplication0..1

defaultContent

0..1

instancesStorage0..1

xsltStorage0..1

resourceAccessSources0..*

resourceAccessTargets0..*

descriptionStorage0..1

resourceMapping0..1

Figure 58: Entire meta-model specifying platform-independent implementation strategies
for resources

211



212



Part IV

Applying the Method: Prototypical
Design and Implementation

I can program a computer
Choose the perfect time

If you’ve got the inclination
I have got the crime

The Pet Shop Boys, “Opportunities (Let’s Make Lots of Money)” from the album “Please”, 1986

10 Example scenario of a BPEL-orchestrated SOA target application
architecture

10.1 Application scenario in the food supply chain domain

The Software Engineering with Enterprise Models (SEEM) method has been applied to
build a research prototype for the food industry domain.* This economic sector faces a
high degree of complexity in size and dynamics, with a large number of market partici-
pants acting to a great extent independently. While the traded goods, food and aliments,
involve an increased level of risks connected to health and other security issues, the goods
and their distribution processes currently are mostly unprotected along the supply chain,
and exposed to potential vulnerabilities, either by intended threats or unintended disasters.
Risks in the food supply chain can potentially range from quality leaks and recipe manip-
ulations, to disease infections or poisonings. To reduce the threats along the food supply
chain, it is desirable to introduce mechanisms that allow for an IT-supported usage control
and a more reliable risk management along the supply chain.

The process flow in current food supply chains typically evolves from an independent peer-
to-peer communication, with each supply chain partner and their corresponding IT system
communicating directly with each other using isolated systems. The communication cov-
ers document exchange between food retailers and food producers, dealing with order
documents and subsequent confirmations, and document exchange between producers and
logisticians, about the transport of produced goods. In current supply chain realizations,
the electronic internet communication between the participants is not necessarily secured,
and the overall flow of the supply chain process is not coordinated and controlled, because
no joint overview on the overall supply chain process is available from any of the involved
systems. The individual supply chain activities thus cannot be controlled for validity in

*The work presented in this section has partially flown into the project RESCUEIT, funded by the German
Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) under
support code no. 13N10963 – 13N10968. Associated consortium partners mentioned with their respective brands
are REWE-INFORMATIONS-SYSTEME GMBH, SAP AG, EISBÄR EIS GMBH, and BAAM LOGISTIK.

213



the overall process flow, it is possible for an outside attacker, or for a malicious inside sup-
ply chain member, to manipulate supply chain processes in a way it cannot be noticed by
any of the involved supply chain members or further parties. E. g., transport instructions
may get manipulated to operate on wrong goods or to target deliveries to invalid locations.
In the unsecured peer-to-peer setting, it cannot be ensured that transport instructions are
consistent with order documents that have earlier been passed among other supply chain
partners, and matching security requirements cannot be ensured in such an environment.
Causes of these risks are either man-in-the-middle attacks, who may supervise unsecured
communication and may manipulate interchanged documents, or intended or unintended
misbehavior of supply chain member, e. g., failure of an involved IT-system.

These fundamental vulnerabilities of supply chain processes, as they are currently present
in the food industry sector, can be overcome by taking in a comprehensive overview per-
spective on supply chains and the actions performed by the individual supply chain mem-
bers during the execution of the supply chain process. Achieving a bird’s-eye-view on
all involved activities, acting entities and resources allows to perform checks for validity
and consistency of exchanged documents and executed process activities along the overall
supply chain system. If such a comprehensive overview in total is made available, secu-
rity mechanisms can be established on the level of the entire distributed system landscape,
which will not be limited to provide local security aspects for independent, isolated sys-
tems of the individual supply chain partners, but which introduce new security features for
distributed systems, such as transparency and usage control [PHB06].

10.2 Domain-specific language for supply chain modeling

An approach to gain a comprehensive overview on an entire supply chain is to model the
involved supply chain members, their actions, and the involved resources in a conceptual
enterprise model. This model can subsequently be annotated with specifications of secu-
rity requirements, which cover the entire distributed system as the object in focus to be
secured. A suitable modeling language for creating a supply chain model can be com-
posed of domain-specific model elements for expressing involved actors, action steps in
the supply chain, and elements to express resources, physical as well as immaterial ones.
Such a modeling language with corresponding model editor tooling support is available
as a research prototype developed by one of the RESCUEIT project partners [MS11]. An
example model of a food supply chain created with this model editor is shown in Fig. 59.

The model excerpt in Fig. 59 shows an abstraction of a food supply chain, in which a
perishable dessert containing fresh eggs is ordered by a retailer, produced by a food man-
ufacturer, and shipped by a logistician. Two of the involved parties are indicated in the
model excerpt as vertical swimlanes.

As a security requirement towards the supply chain, the model indicates the demand for
a signed document communication of the delivery contract, to ensure the authenticity of
the delivery contract and to reduce the possibility of fraud delivery contracts issued by
an unauthorized party. This security requirement is visualized in the model using a sym-

214



Figure 59: Excerpt of an example food supply chain model in a domain-specific modeling
language (contributed to the RESCUEIT project by the project partner SAP AG)

bol, which shows a pencil signing a paper document. It appears both at the side of the
sending and the receiving party of the delivery contract, together with graphical user in-
terface (GUI) elements to further configure the demand for document signing. Using this
graphical symbol, the modeling language represents the desired conceptual meaning of the
security concept “signed electronic document” with a suitable metaphor from the domain’s
context.

As another example of a security requirement, a cooling vehicle is required for the trans-
portation of the food, which is a relevant security constraint in the given example case
of food containing fractions of fresh egg products. The security requirement demanding a
cooled transportation is indicated by a thermometer symbol attached to the transport action
in the lower-left communication activity model element, accompanied by a double slider
to specify the allowed temperature range, and other GUI elements to configure further
options of temperature monitoring.

Using this domain-specific modeling language, supply chains can be configured from a
bird’s-eye-view perspective by management staff without detail knowledge about the tech-
nical realization of the individual security demands. Once the conceptual demands towards
the supply chain are captured in the model, it remains a methodical task to ensure the align-
ment between the modeled requirements on the one hand, and the real-world execution of
the supply chain processes, which consists of electronic document exchange and physical
goods transportation, on the other hand. Ensuring this alignment requires organizational
and technological steps to be taken, the latter of which are looked closer at in the following.

215



10.3 A distributed service oriented architecture (SOA)

Bringing together the conceptual view of the supply chain model, and the actual supply
chain process execution performed by multiple actors and their information technology
(IT) systems, requires to introduce a monitoring and logging component as a new com-
ponent in the supply chain systems architecture, which keeps track of the individual steps
of action taken by the supply chain members and their IT systems. To keep introductory
costs and acceptance barriers as low as possible, the existing peer-to-peer communication
setup among the supply chain members is not to be changed in principle, and existing IT
systems at each supply chain member’s location remain operating with a minimum of con-
figuration changes. This is achieved by interfacing existing individual IT systems to local
enterprise service bus (ESB) components, which re-route existing communication through
the additionally introduced monitoring and control component. This re-routing of com-
munication traffic happens transparently to the involved supply chain member systems,
the only changes in existing IT systems can be expected to be limited to modifying com-
munication endpoints, i. e., the Internet Protocol (IP) addresses of communicating partner
systems, which get changed to point to the local ESBs. With such a communication ar-
chitecture, the overall supply chain process becomes monitorable and observable by the
introduced monitoring component, with minimal invasive changes to the existing systems.

Besides enabling usage control, the use of multiple distributed ESBs also allows to se-
lectively apply existing security technology to encrypt and obscure communication traffic
among supply chain members, because distributed communication happens through the
involved ESBs only, and can be enriched with additional layers of security independently
from the supply chain members’ legacy IT systems. Applying such security technology
additionally lowers the risk of external intrusion into the supply chain process.

Fig. 60 shows the different architectural constellations without and with additional logging
and monitoring component. Fig. 60 a) displays the original legacy situation, with the
supply chain partners communicating directly in a peer-to-peer environment. In contrast
to this setting, Fig. 60 b) pictures the situation after introducing the central logging and
monitoring component. From the involved partners’ isolated points of view, the change
in setting up the communication relationships remains small, however, with the central
logging and monitoring component introduced, there now exists an entity with sufficient
knowledge to keep track of the overall process instance states.

10.4 Implementation strategy meta-model for a SOA platform

The target architecture of the example project, for which code is to be generated, is a
service oriented architecture (SOA) [Erl06, Gro09b] environment, in which a Business
Process Execution Language (BPEL) process is controlling the dynamics of the over-
all distributed software system. Each of the interoperating systems is accessible as a
web-service. The according interfaces and operations during interactions can thus be de-
scribed in terms of web-service specifications. The implementation strategy meta-model

216



Supply Chain Member 3

Supply Chain Member 2Supply Chain Member 1

Legacy IT System

Legacy IT System Legacy IT System

(a)

Supply Chain Member 3

Supply Chain Member 2Supply Chain Member 1

Logging and Monitoring

Legacy IT System

ESB

BPEL Execution

ESB

Legacy IT System

ESB

Legacy IT System

ESB

(b)

Figure 60: Conceptualizations of the distributed architecture, a) original peer-to-peer set-
ting, b) using ESB proxies to securely interconnect existing legacy systems

217



offers concepts for describing web-service providers, the web-services they make acces-
sible, and the operations that can be invoked on the web-services. These concepts are
represented by the meta-classes WebServiceProvider, WebService, and Web-
ServiceOperation. WebServiceProvider is integrated with the generic map-
ping meta-model by sub-classing the generic abstract type ArchitectureSpecifi-
cActorImplementation, WebService represents a specialiization of the generic
ArchitectureSpecificSoftwareResource concept. One additional technical
concept representing communication facilities of the SOA is the notion of a message queue
for interchanging continuous data streams among involved partner systems. This concept
is represented by the meta-class MessageQueue, which also is considered to integrate
with the generic mapping meta-model as a sub-class of ArchitectureSpecific-
SoftwareResource.

These types belong to the technical domain of a distributed SOA environment, they are
not conceptual elements on the same level as the language concepts used in enterprise
modeling languages, which are used as the starting point of the SEEM method. Instead,
these technical domain types can be described by an implementation strategy meta-model,
which makes up a domain-specific language especially suited for describing the technical
aspects of the SOA development project. Provided suitable tooling support, as e. g. avail-
able with the ECLIPSE Eclipse Modeling Framework (EMF) packages (see Sect. 12), this
implementation strategy meta-model can automatically be converted into a model editor,
which allows to create and edit implementation strategy model instances in the specific
language described.

The set of previously described core concepts of the implementation strategy meta-model
for a SOA platform with BPEL control is shown in Fig. 61.

Further classes in the meta-model describe specifics of the underlying technical infras-
tructure of a SOA and its application in the specifically desired use-case, which is pri-
marily based on securing and monitoring electronic document communication, along with
traditional input and event handling of a distributed SOA application. The technical ele-
ments which implement the electronic document monitoring together with monitoring of
the ongoing supply chain process are reflected by the target architecture specific meta-
types of process-step implementation strategies, defined by the meta-classes Commu-
nicationMonitoring, PhysicalStepMonitoring, and LogicalStepMon-
itoring, which inherit from the abstract meta-class ArchitectureSpecificPro-
cessStepImplementation.

To describe the connection between multiple process-steps in such an architecture, the
meta-class WaitForMessage is included as a concrete sub-class of Architecture-
SpecificControlFlowImplementation. Using this control flow implementa-
tion, in contrast to the generic Continuous control flow implementation, will cause the
implementation to receive input documents associated with the next process-step, before
the process continues.

The implementation components for handling electronic document exchange, as well as
the security handling mechanisms applied during electronic document communication, are
expressed as target-architecture specific ways of performing information object accesses.

218



A
bs
tr
ac
tA

rc
hi
te
ct
ur
eM

od
el

(f
ro

m
 m

ap
p

in
g

)

A
rc
hi
te
ct
ur
eS

pe
ci
fi
cC

on
tr
ol
Fl
ow

Im
pl
em

en
ta
ti
on

(f
ro

m
 m

ap
p

in
g

)
A
rc
hi
te
ct
ur
eS

pe
ci
fi
cP

ro
ce
ss
St
ep

Im
pl
em

en
ta
ti
on

(f
ro

m
 m

ap
p

in
g

)
A
rc
hi
te
ct
ur
eS

pe
ci
fi
cI
nf
or
m
at
io
nO

bj
ec
tA

cc
es
s

(f
ro

m
 m

ap
p

in
g

)

A
rc
hi
te
ct
ur
eS

pe
ci
fi
cA

ct
or
Im

pl
em

en
ta
ti
on

(f
ro

m
 m

ap
p

in
g

)

SO
A

A
rc

h
it

ec
tu

re
M

o
d

el
W

eb
Se

rv
ic

eP
ro

vi
d

er
n

am
e 

: E
St

ri
n

g
W

eb
Se

rv
ic

e
p

re
Þ

x 
: E

St
ri

n
g

ro
le

 : 
E

St
ri

n
g

n
am

es
p

ac
e 

: E
St

ri
n

g
w

sd
lF

ile
 : 

E
St

ri
n

g
p

o
rt

Ty
p

e 
: E

St
ri

n
g

p
o

rt
s 

: E
St

ri
n

g
en

d
p

o
in

t 
: E

St
ri

n
g

A
rc
hi
te
ct
ur
eS

pe
ci
fi
cS
of
tw

ar
eR

es
ou

rc
e

(f
ro

m
 m

ap
p

in
g

)

W
eb

Se
rv

ic
eO

p
er

at
io

n
n

am
e 

: E
St

ri
n

g
in

p
u

tM
es

sa
g

eT
yp

e 
: E

St
ri

n
g

o
u

tp
u

tM
es

sa
g

eT
yp

e 
: E

St
ri

n
g

C
o

m
m

u
n

ic
at

io
n

M
o

n
it

o
ri

n
g

re
ac

ti
o

n
P

ro
ce

ss
ID

 : 
E

St
ri

n
g

re
ac

ti
o

n
P

ro
ce

ss
C

o
n

d
it

io
n

 : 
E

St
ri

n
g

P
hy

si
ca

lS
te

p
M

o
n

it
o

ri
n

g

Lo
g

ic
al

St
ep

M
o

n
it

o
ri

n
g

W
ai

tF
o

rM
es

sa
g

e
ti

m
eo

u
tS

ec
o

n
d

s 
: E

In
t

E
n

cr
yp

t
al

g
o

ri
th

m
 : 

E
St

ri
n

g
ke

yN
am

e 
: E

St
ri

n
g

ke
yP

as
s 

: E
St

ri
n

g

D
ec

ry
p

t
al

g
o

ri
th

m
 : 

E
St

ri
n

g
ke

yN
am

e 
: E

St
ri

n
g

ke
yP

as
s 

: E
St

ri
n

g

C
re

at
eS

ig
n

at
u

re
ca

n
o

n
ic

al
iz

at
io

n
M

et
h

o
d

 : 
E

St
ri

n
g

d
ig

es
tM

et
h

o
d

 : 
E

St
ri

n
g

tr
an

sf
o

rm
A

lg
o

ri
th

m
 : 

E
St

ri
n

g
si

g
n

at
u

re
M

et
h

o
d

 : 
E

St
ri

n
g

ke
yN

am
e 

: E
St

ri
n

g
ke

yP
as

s 
: E

St
ri

n
g

en
ti

ty
N

am
e 

: E
St

ri
n

g

V
er

if
yS

ig
n

at
u

re
si

g
n

at
u

re
ID

 : 
E

St
ri

n
g

si
g

n
er

ID
 : 

E
St

ri
n

g

P
ro

o
fA

u
th

en
ti

ca
ti

o
n

cr
ed

en
ti

al
St

ru
ct

u
re

 : 
E

St
ri

n
g

p
ro

o
fS

p
ec

iÞ
ca

ti
o

n
 : 

E
St

ri
n

g

R
ec

ei
ve

M
es

sa
g

e
Se

n
d

M
es

sa
g

e

M
es

sa
g

eQ
u

eu
e

en
d

p
o

in
t 

: E
St

ri
n

g
se

rv
ic

es
0

..*
o

p
er

at
io

n
s

0
..*

Fi
gu

re
61

:C
or

e
co

nc
ep

ts
of

th
e

im
pl

em
en

ta
tio

n
st

ra
te

gy
m

et
a-

m
od

el
fo

rd
es

cr
ib

in
g

a
SO

A
en

vi
ro

nm
en

t

219



This is why they are declared as sub-classes of the abstract meta-type Architecture-
SpecificInformationObjectAccess. Implementation strategies for information
object accesses, which represent electronic document exchange in a SOA, are declared
by the meta-classes ReceiveMessage and SendMessage, which denote the actions
performed by the controlling BPEL process to realize to orchestration among involved
partner systems. On this concrete technical level, the focus rather lies on receiving and
sending actions performed by the control process, not, as on the conceptual level, on send-
ing and receiving actions carried out by involved business partners’s systems. This is why
the notions of sending and receiving appear to be inverse on the two levels of abstrac-
tions, comparing the conceptual model elements with the accordingly mapped entries of
the SOAarchitectureModel implementation strategies.

In addition to performing operations of document exchange, the application of security
techniques such as encryption and decryption of electronic documents, or the creation
of digital signatures and their later verification, are part of the functionality provided by
the coordinating control process. These parts of functionality are represented by the meta-
classes Encrypt, Decrypt, CreateSignature, and VerifySignature, respec-
tively. Finally, the ProofAuthentication implementation strategy type denotes the
use of a credential based proof-protocol, to verify the validity of electronic documents
received.

The entire notion of an implementation strategy meta-model for a SOA is represented by
the container class SOAArchitectureModel. It serves to instantiate implementation
strategy models of this specific kind, but also allows to contain any of the inherited generic
architecture concepts provided by the generic mapping model and implementation strategy
model conceptualizations given as prepared elements of the method (see Sect. 6.2.2).

In Fig. 62, the entire meta-model is shown. An example implementation strategy model
instance in the language defined by this meta-model is shown in Fig. 63, as it is being
edited with the automatically generated EMF tooling support.

10.5 Executable BPEL workflow

An excerpt of a visual representation of the executable BPEL workflow model, generated
as output of the applied model transformations, is shown in Fig. 64. Appendix A.4.4
contains the entire source code of the generated BPEL workflow model.

In a SOA environment, an important role is played by interface declarations for web-
services, which can be exchanged among web-service implementation platforms of differ-
ent kinds. The interfaces are specified via Extensible Markup Language (XML) documents
in the Web Services Description Language (WSDL), an interface specification given in the
WSDL is typically called in short “a WSDL”. WSDLs provide a uniform way to expose
the technical specification for using web-service functionality remotely from any client on
the internet.

The input and output interfaces of BPEL workflow processes typically are also described
by WSDL interface declarations. This makes any BPEL process accessible in the same

220



A
bs
tr
ac
tA

rc
hi
te
ct
ur
eM

od
el

(f
ro

m
 m

ap
p

in
g

)

A
rc
hi
te
ct
ur
eS

pe
ci
fi
cC

on
tr
ol
Fl
ow

Im
pl
em

en
ta
ti
on

(f
ro

m
 m

ap
p

in
g

)
A
rc
hi
te
ct
ur
eS

pe
ci
fi
cP

ro
ce
ss
St
ep

Im
pl
em

en
ta
ti
on

(f
ro

m
 m

ap
p

in
g

)
A
rc
hi
te
ct
ur
eS

pe
ci
fi
cI
nf
or
m
at
io
nO

bj
ec
tA

cc
es
s

(f
ro

m
 m

ap
p

in
g

)

A
rc
hi
te
ct
ur
eS

pe
ci
fi
cA

ct
or
Im

pl
em

en
ta
ti
on

(f
ro

m
 m

ap
p

in
g

)

SO
A

A
rc

h
it

ec
tu

re
M

o
d

el
W

eb
Se

rv
ic

eP
ro

vi
d

er
n

am
e 

: E
St

ri
n

g
W

eb
Se

rv
ic

e
p

re
Þ

x 
: E

St
ri

n
g

ro
le

 : 
E

St
ri

n
g

n
am

es
p

ac
e 

: E
St

ri
n

g
w

sd
lF

ile
 : 

E
St

ri
n

g
p

o
rt

Ty
p

e 
: E

St
ri

n
g

p
o

rt
s 

: E
St

ri
n

g
en

d
p

o
in

t 
: E

St
ri

n
g

A
rc
hi
te
ct
ur
eS

pe
ci
fi
cS
of
tw

ar
eR

es
ou

rc
e

(f
ro

m
 m

ap
p

in
g

)

W
eb

Se
rv

ic
eO

p
er

at
io

n
n

am
e 

: E
St

ri
n

g
in

p
u

tM
es

sa
g

eT
yp

e 
: E

St
ri

n
g

o
u

tp
u

tM
es

sa
g

eT
yp

e 
: E

St
ri

n
g

C
o

m
m

u
n

ic
at

io
n

M
o

n
it

o
ri

n
g

re
ac

ti
o

n
P

ro
ce

ss
ID

 : 
E

St
ri

n
g

re
ac

ti
o

n
P

ro
ce

ss
C

o
n

d
it

io
n

 : 
E

St
ri

n
g

P
hy

si
ca

lS
te

p
M

o
n

it
o

ri
n

g

Lo
g

ic
al

St
ep

M
o

n
it

o
ri

n
g

W
ai

tF
o

rM
es

sa
g

e
ti

m
eo

u
tS

ec
o

n
d

s 
: E

In
t

E
n

cr
yp

t
al

g
o

ri
th

m
 : 

E
St

ri
n

g
ke

yN
am

e 
: E

St
ri

n
g

ke
yP

as
s 

: E
St

ri
n

g

D
ec

ry
p

t
al

g
o

ri
th

m
 : 

E
St

ri
n

g
ke

yN
am

e 
: E

St
ri

n
g

ke
yP

as
s 

: E
St

ri
n

g

C
re

at
eS

ig
n

at
u

re
ca

n
o

n
ic

al
iz

at
io

n
M

et
h

o
d

 : 
E

St
ri

n
g

d
ig

es
tM

et
h

o
d

 : 
E

St
ri

n
g

tr
an

sf
o

rm
A

lg
o

ri
th

m
 : 

E
St

ri
n

g
si

g
n

at
u

re
M

et
h

o
d

 : 
E

St
ri

n
g

ke
yN

am
e 

: E
St

ri
n

g
ke

yP
as

s 
: E

St
ri

n
g

en
ti

ty
N

am
e 

: E
St

ri
n

g

V
er

if
yS

ig
n

at
u

re
si

g
n

at
u

re
ID

 : 
E

St
ri

n
g

si
g

n
er

ID
 : 

E
St

ri
n

g

P
ro

o
fA

u
th

en
ti

ca
ti

o
n

cr
ed

en
ti

al
St

ru
ct

u
re

 : 
E

St
ri

n
g

p
ro

o
fS

p
ec

iÞ
ca

ti
o

n
 : 

E
St

ri
n

g

R
ec

ei
ve

M
es

sa
g

e
Se

n
d

M
es

sa
g

e

M
es

sa
g

eQ
u

eu
e

en
d

p
o

in
t 

: E
St

ri
n

g
se

rv
ic

es
0

..*
o

p
er

at
io

n
s

0
..*

Fi
gu

re
62

:E
nt

ir
e

im
pl

em
en

ta
tio

n
st

ra
te

gy
m

et
a-

m
od

el
fo

rd
es

cr
ib

in
g

th
e

ex
am

pl
e

SO
A

ta
rg

et
ar

ch
ite

ct
ur

e

221



Figure 63: Example implementation strategy model instance in the language defined by
the implementation strategy meta-model

222



Figure 64: Excerpt of a visual representation of the generated executable BPEL workflow
model

223



way as a web-service, which makes the concept of web-service and their interfaces be
recursively addressable from BPEL processes.

To offer an entirely automatized software generation procedure, the code generation tem-
plates developed for the SOA target platform also take care for creating the correspond-
ing WSDL interface description for the generated BPEL workflow model. In addition,
required configuration files for deploying the BPEL model and its WSDL interface decla-
ration, are output by the code generation templates of the configured method. A graphical
representation of the generated WSDL is shown in Fig. 65, the corresponding XML artifact
is included in Appendix A.4.4.

Figure 65: Excerpt of a graphical model representation of the generated WSDL interface
declaration for the BPEL process

By introducing the BPEL process execution component as an intermediary entity, which
keeps track of the entire communication relationships along the supply chain, the supply
chain process can become subject to both monitoring and usage control by an entity with
enough knowledge to keep track of a process’s overall state. Although the original peer-
to-peer architecture of the earlier communication setup among the supply chain partners
is intercepted by the central monitoring and control entity, from the supply chain partners’
points of views, there is only a minor change in the communication setup, which con-
sists of changing the technical end-point address of a targeted service from the originally
addressed supply chain partner, to the process orchestration component.

The model transformations and models specified when applying the SEEM method rep-
resent a set of formal description means that define the relationships between the con-
ceptually specified security requirements, which are stated from a non-technical business-
oriented perspective, and the concrete technical realization as it is provided by the gener-
ated BPEL process, as executable output artifact of the method.

224



The SEEM method can be applied in a zero-coding manner, meaning that all compo-
nents and program logic of the finished executable artifacts will be generated by the model
transformations and artifact generation steps automatically, without further developer in-
teraction. Of course, configuring the method in this way shifts development efforts into
template configuration and generator development, requiring higher meta-programming
competencies than straight-forward artifact development. For this reason, there may be
cases in which a zero-coding approach is inefficient in terms of development efforts and
costs.

In those cases, where a zero-coding approach can be provided, and the involved model
transformations and generators can automatically be executed in sequence, which outputs
executable artifacts without further developer interaction, the SEEM method offers a con-
trolled, repeatedly applicable, and as a consequence, certifiable method to interlink the
conceptual semantics from business perspective models to secure technical implementa-
tions. Having such a certifiable method at hand, fosters the acceptance of the created
IT-system, and increases trust in the proper functionality of the systems. In addition, busi-
ness perspective stakeholders with limited, yet basic knowledge about technical process
implementations, can make use of BPEL visualization tools, to “read” the generated out-
put artifacts and to punctually check the generated process for valid implementation. This
trust on the side of the conceptual business stakeholder perspective is an inevitable prereq-
uisite for a comprehensive security architecture.

10.6 Overall implemented example

The implemented method components, which realize a zero-coding transformation ap-
proach, are represented in Fig. 66. Numbers in the visualization indicate the procedural
order, in which order model transformations are applied.

The first model involved is the conceptual supply chain model, which is serialized to a file
in a straight-forward file format, as an XML language instance. The example supply chain
model data file is included in Appendix A.4.4.

The adapter transformation converts the XML file to an EMF compatible model instance
representation. The implemented adapter transformation for the example is included in
Appendix A.4.1.

Via the initialization transformation, a mapping model as well as an implementation strat-
egy model instance are created. The initialization transformation takes the extracted enter-
prise model (EEM) model as input, and outputs a mapping model, which establishes refer-
ences between conceptual elements of the supply chain model on the one hand, and imple-
mentation strategies for the chosen concrete target architecture of a BPEL process orches-
tration engine in a SOA environment. Since the presented example realizes a zero-coding
approach when it comes to generating the final executable artifacts, all mapping model ref-
erences created are complete, and point to implementation strategies in the implementation
strategy model that have been completely determined by the initialization transformation.
The applied example initialization transformation scripts are reproduced in Appendices

225



A.3.2 and A.4.2. The initialization transformation also uses a simply structured external
configuration file, from which technical parameters are transfered into the generated imple-
mentation strategy model. This configuration file is shown in Appendix A.3.3. An overall
configuration file for specifying the base directory and project name is also reproduced in
Appendix A.3.3.

From the set of models now available after the previous transformation steps, which are
the conceptual supply chain model representation, the implementation strategy model in-
stance describing concrete implementation components, and the mapping model binding
both together, an executable BPEL artifact is generated by a model-to-text code genera-
tion transformation. The corresponding XPAND transformation description can be viewed
in Appendix A.4.3. The resulting BPEL process in textual representation is included in
Appendix A.4.4, it has already been introduced as a graphical excerpt in Fig. 64.

Figure 66: Overview on the implemented example method components and steps (accord-
ing to [GBKK12])

To invoke the individual transformation steps, invocation scripts have been used for each
transformation. These scripts can also be combined into one overall transformation script,
which automatically runs the entire transformation sequence in one step to produce the
desired output artifact in a zero-coding style. The scripts for individual transformation
invocations, including optional checking steps between each transformation step, are in-
cluded in Appendices A.3.1, A.3.2, and A.3.3. They are written in the Modeling Work-

226



flow Engine (MWE) language included in the EMF tooling components shipped with the
ECLIPSE modeling tools (see Sect. 12.5). The combined transformation steps, which in
a zero-coding approach can be executed automatically in one sequence, are invoked alto-
gether by the combined 00-run-all.mwe transformation, included in Appendix A.4.3.
(The numbers in front of the script names ensure a sequential sorting when the files are
displayed in a file-system view.)

227



11 MEMO enterprise models for developing JSP web applications

To present alternative adaptations of the method, besides the ones exemplified in the com-
prehensive BPEL generation example (see Sect. 10), this section gives further details on
how the introductory web shop example in Sect. 2 has technically been realized. This ex-
ample uses MEMO enterprise models as conceptual models describing the socio-technical
environment of the software to be generated. The software, this time, is created as exe-
cutable Java Server Pages (JSP) web application artifacts, which represent dynamic web-
pages running on a web-server in the internet. The application architecture resembles a
traditional web-application environment, with web-server and web-client running on phys-
ically remote machines, communicating through the internet via the Hyper-Text Transfer
Protocol (HTTP).

11.1 Adapting the MEMO enterprise modeling method

11.1.1 The MEMO language family as input enterprise modeling languages

The MEMO enterprise modeling method [Fra12] offers modeling perspectives for strate-
gic goals and high-level actions, as well as for modeling organizational roles, resource en-
tities and processes. These multiple perspectives are centrally integrated through the use
of process control flow models. In process control flow models, process-steps get associ-
ated with responsible actors whose roles are defined in organization diagrams. Resources
are modeled with a resource modeling language and can be allocated to process-steps, to
express which resources are accessed in that specific process-step. The semantic integrity
of these multiple perspectives on an organization is internally ensured by the language ar-
chitecture. Fig. 67 shows an excerpt from the MEMO process control flow model in the
introductory example (see Sect. 2), in which organizational roles and resources from other
perspectives are referenced.

11.1.2 MEMOCENTERNG as editor application

Tooling support for creating and editing models of the MEMO language family is available
via the MEMOCENTERNG [GF10, Res] software application.

The languages included in MEMOCENTERNG are the Organization Diagram language
for modeling organizational structure [Fra11a], and the Process Control Flow Language
[Fra11b], which allows to express semantically rich process model descriptions of busi-
ness processes and other methodical procedures in organizations. The Process Control
Flow language is enhanced by the Process Decomposition Language which is used for
specifying static decomposition relationships among process-steps, i. e., expresses which
process-steps are further described by more fine-grained process models. Finally, the Strat-
egy Diagram and Activity Diagram languages for expressing strategy, goals and actions
from a high-level strategic view are part of MEMOCENTERNG.

228



Cancel Order

Webshop entered Select products
from catalog

< Customer >

Order canceled

Fill-in order form
or cancel

< Customer >

Order is valid Pick goods from storage

< ShippingEmployee >

Goods are picked Package goods and send

< ShippingEmployee >

Order complete

Product List Order Web Browser

Order is invalid Send cancellation e-mail

Storage Management IS

Confirmation
is read

Goods are packaged
and sent

Send confirmation e-mail

Confirmation Text Cancelation Text

Submit Order
Products 
are selected

Order is submitted Read confirmation

< Customer >

Validate order

< ShippingEmployee >

Figure 67: Excerpt from a MEMO process control flow model referencing elements from
other perspectives

To model physical and non-tangible resources in business contexts, the ResML is included
in the set of modeling languages, accompanied by the Allocation Diagram language which
is responsible for expressing the mappings between process-steps and resources.

MEMOCENTERNG forms a comprehensive environment for enterprise modeling from
multiple perspectives, store and manage interrelated models in a common environment,
and further process models inside the same platform, since the platform is based on the
Eclipse [CR08] environment which can additionally be enhanced by a multitude of third-
party supplementary components for software development.

Fig. 69 shows an example process control flow model, and other models, being edited in
MEMOCENTERNG.

11.1.3 Adapter transformation to configure the method for the MEMO language
family

To adapt the method to the MEMO language family as input enterprise modeling lan-
guages, an adapter transformation (see Sect. 6.3.1) has to be created in order to use MEMO
models as input and translate them to the intermediate EEM representation. Once this rep-
resentation is available, the components and activities defined by the SEEM method can
be applied to a conceptual model format known at development time of the method, which

229



allows to make use of generic automation components that have been developed together
with the SEEM method.

The MEMOCENTERNG implementation is also based on the ECLIPSE modeling tools.
This allows to use the internal model transformation languages and tools integrated in the
EMF packages to formulate the desired adapter transformation. In the example implemen-
tation, the XTEND [Eclc] language from the EMF tooling components is used.

MEMOCENTERNG stores models for different conceptual perspectives, i. e., the process
perspective, the resource perspective, the organization structure perspective, etc., as indi-
vidual model instances. For the adapter transformation to create a single comprehensive
EEM model, it is thus necessary to use all individual input models as input to the transfor-
mation, while a single model instance is output as the transformation’s result. The XTEND
language supports to have multiple input models for model-to-model transformations.

Appendix A.3.1 shows the prototypical implementation of the model transformation that
translates a set of interrelated MEMO enterprise models into an EEM representation. A
script to invoke the transformation with multiple required input models is given in Ap-
pendix A.3.1

11.2 Configuring a JSP web-application target architecture

As an alternative example to the introduced BPEL generation target (see Sect. 10), details
about generating a JSP web application are discussed in the following section. This target
architecture has been used in the introductory example in Sect. 2, to prototypically realize
the conceptually modeled functionality of a web-shop.

The initialization of JSP-platform-specific implementation strategies is performed by the
script contained in Appendix A.3.2.

11.2.1 Example implementation strategy meta-model for a JSP web-application
platform

The prototype implementation accounts for generating front-end functionality as web ap-
plication. Web application usage scenarios can differ strongly from local application us-
age, especially because they can be performed by actors who are external to the organiza-
tion and possibly are anonymous.

The meta-classes suggested by the web implementation strategy meta-model are shown in
Fig. 68, and described in the following.

230



AbstractArchitectureModel
(from mapping)

WebArchitectureModel
conÞgurationFilename : EString

WebMainNavigationLink
name : EString

ArchitectureSpecificControlFlowImplementation
(from mapping)

WebNavigationLink

ArchitectureSpecificEventImplementation
(from mapping)

WebSessionUser

ArchitectureSpecificActorImplementation
(from mapping)

ArchitectureSpecificActorResolverImplementation
(from mapping)

EventLinkHasBeenFollowed

Link

ArchitectureSpecificUserInteraction
(from mapping)

link1

Figure 68: Example implementation strategy meta-model for a web application architec-
ture

The WebArchitectureModel meta-class represents the entire web implementation
strategy model as root element.

231



To enrich the set of available event implementation strategies, the WebFormHasBeen-
Submitted meta-class has been included in the meta-model as a subclass of the map-
ping meta-model’s abstract meta-class ArchitectureSpecificEventImplemen-
tation. It allows to describe that an enterprise information system (EIS) reacts on form
input received from a web page. This implementation strategy may be applied both to start
events, or to events in between process-steps, the code generation templates will distin-
guish these two cases and generate appropriate artifact representations.

To resolve concrete users that fulfill an actor role, the WebSessionUser meta-class is
part of the meta-model. It subclasses the abstract meta-class ArchitectureSpecifi-
cActorResolverImplementation from the mapping meta-model, and thus allows
to describe an additional actor resolver implementation strategy based on session ids. Ses-
sion ids are a concept specifically available on the underlying technological platform of
web-applications.

With the HTMLForm implementation strategy, an additional kind of information editor is
introduced to the set of editors that can be used when AbstractInformationAc-
cessImplementation process-member implementation strategies are implemented.
The HTMLForm meta-class represents a kind of editor which is specific to underlying web
application technology.

232



12 Code generation and tooling support

12.1 Deriving executable artifacts

With the method being adapted to an enterprise modeling language, appropriate imple-
mentation strategies being available for all targeted front-end architecture platforms, and a
domain application programming interface (API) which formalizes rudimentary architec-
ture design decisions at hand, all kinds of methodical artifacts to describe an executable
software system are available. A final methodical component is required now to transform
this description of a software system into actually running software. The mechanism,
which achieves this, is rather complex than complicated, i. e., it has to deal with a large
number of available model elements to derive an executable system from, but this transfor-
mation is primarily a horizontal transformation, which preserves the level of abstraction
the model elements already reside on, and merely performs a syntactic translation from one
technical artifact to another. This transformation can be named “horizontal”, because the
mapping model and its accompanied implementation strategy models contain language
elements that explicitly describe implementation strategies. Executable artifacts derived
from these models thus reside on the same low level of abstraction as the models, because
the model elements intentionally carry knowledge about implementation details.

There are multiple alternative approaches to derive executable artifacts from models. One
straight-forward idea is to interpret models at runtime, i. e., read the model content, and re-
act accordingly by invoking implementation components depending on the model elements
that are encountered during model analysis. Such an approach requires an interpreter to
be developed, which knows about the operational semantics of the model elements and
behaves accordingly. From a programming point of view, this means to write a program
which at start-up reads in the model files, and then traverses the structure of the model
elements, testing for the existence of specific model elements, acting accordingly, and
evaluating element attributes to finally invoke a subcomponent which realizes the imple-
mentation of the modeled implementation strategy with the specified parameters. An ad-
vantage of this approach is the flexibility in reacting on changes in the models. Whenever
a model has changed, the interpreter needs only to be restarted again, and can continue
operating on the new model. However, with every change in the underlying modeling
languages, the interpreter has to be adapted, too.

Although an interpretation mechanism as sketched is possible for runtime execution of
models, it is not the commonly used mechanism to make models executable, because it is
inflexible in reacting on changes in the modeling languages, and it encapsulates too much
knowledge about the formal interpretation of model content in hard-coded program code.

Another approach for getting executable software from models is typically applied in
domain-specific software engineering (DSSE) projects and can equally be applied to the
method proposed here. The approach is based on transforming model content to software
artifacts at development time, which creates an entire software system based on compo-
nents that in principle could have been developed manually, too, but are results of auto-
matic transformations from the models.

233



Software development projects, which apply artifact generation techniques to gain an ex-
ecutable software system, are called “generative” development approaches [CE00]. To
demonstrate a prototypical engineering process, the generative approach is chosen in the
following to transform the models created with the method to an executable software sys-
tem.

12.2 Code generation templates

When talking of applying code generation templates in the context of this work, any use
of a mechanism is denoted, which is capable of transforming models to technical artifacts
that constitute the implementation of a software system. The term “code” originates from
traditional uses in model-driven program code generation to output source code in a pro-
gramming language, but code generation templates are also able to output textual artifacts
of any other kind, e. g., configuration files or data representations. Code generation tem-
plates are applied using a model-to-text transformation engine, which both takes the code
generation templates, and the models to be transformed, as input, and generates textual
artifacts as output.

Language elements of a template language are used to query content from the input mod-
els, transform it, and optionally insert it in the generated output artifacts at desired places.
Besides this, language constructs can conditionally decide based on model content whether
to include fragments into the generated output artifact or not.

The interpretation mechanism of a model-to-text transformation invokes code generation
templates by traversing the input models, and feeds instance data met during traversal
as parameters to the templates. The model-to-text mechanism may provide constructs to
associate specific model elements to specific template parts, so that different templates can
be specified to be evaluated for different model elements.

While a code generation template is being evaluated, model content is reflected via vari-
ables in the template language, and can usually be queried and modified using program-
ming language constructs of the template language. Different code generation template
languages may provide different ranges of functionality to work with model content inside
the template, but basic functionality for comparing values and conditionally include output
fragments or not are included in any code generation template language.

When a code generation template has been identified by the model-to-text engine to be
applicable to a model element, and variables internal to the template have been set to re-
flect the model element’s content, the template gets evaluated linearly from top to bottom,
copying all constant fragments of partial output artifacts to the generated output, insert
values in the output at places where specified, and decide on conditional inclusion of out-
put fragments depending on evaluated conditions. Using this mechanism, the semantics
captured in model element instances in principle can be interpreted as any kind of techni-
cal artifact of a software system, by constructing the according code generation template
that output the artifacts in question.

234



To be used in the method, individual code generation templates are created for each target
architecture. The artifacts required to describe a deployable software system, are prospec-
tively different on each unique target platform. This is why, in principle, every target
architecture needs its own set of code generation templates, which all take the same com-
bination of the mapping model and accompanied models, but create different artifacts,
specific to the technical needs of the underlying implementation architecture. However, if
parts of code generation for different target architectures turn out to contain common ele-
ments, most template languages provide abstraction mechanisms for reusing sub-templates
in multiple contexts.

The prototypical implementation to demonstrate the method uses the XPAND code gener-
ation template language, for which a model-to-text engine and additional tooling support
are available through the ECLIPSE modeling project components. See Sect. 12.5.5.

Example code generation templates, which generate JAVA and BPEL source code artifacts
from the models in the examples, are included in Appendices A.3.3 and A.4.3.

12.3 Requirements towards tooling support

When applying the previously described method, a number of model artifacts are being
operated on, either by manual editing activities using model editor software, or by auto-
matic transformations that are performed by a model transformation engine. To efficiently
apply the proposed method, tooling support must be made available to support manual
editing activities and perform the automatic steps.

Tooling support is both required to implement automatic processing steps, e. g., model
transformations or model checking steps, and in the form of model editors which enable
software architects and developers to access and edit model content. The following section
lists the requirements towards appropriate tooling support for the proposed method.

At first, a set of enterprise modeling languages is required, including a business process
modeling language with interrelated organization modeling and resource modeling facili-
ties. In addition, a meta-modeling language should be available to specify domain-specific
modeling languages and to generate corresponding diagram editors or tree-node editors.To
generate and modify models automatically, a mechanism to execute model-to-model trans-
formations needs to be included in the tooling environment, as well as validity checking
functionality, which is required to validate the formal semantic correctness of models.
With the help of code generation functionality, models are transformed to textual artifacts,
e. g., to source code or configuration files. Such functionality is expected to be part of the
tooling support, too.

Finally, all components should be bound together in a common environment to make their
functionality efficiently accessible to software architects and developers.

To offer implementations of the required tooling components, a software environment has
been chosen which integrates technological building blocks for realizing the required func-
tionality. The environment and the individual components are described in the following.

235



Figure 69: Enterprise model editors in MEMOCENTERNG

12.4 Enterprise modeling with the MEMOCENTERNG platform

The MEMO enterprise modeling languages with corresponding diagram editors provides
a scientifically grounded approach for enterprise modeling [Fra94, Fra02, Fra11d, Fra12].
The languages are implemented as a set of diagram editors in the MEMOCENTERNG
environment [GF10]. An example of a business process model edited with MEMOCEN-
TERNG’s control flow diagram editor is shown in Fig. 69. The language family also con-
tains an organization modeling language for explicating organizational relationships and
structure, as well as a resource modeling language. Excerpts of corresponding models,
edited in MEMOCENTERNG, are also shown in Fig. 69.

236



12.5 Tooling on top of the ECLIPSE MODELING FRAMEWORK (EMF)

ECLIPSE is known to most software developers as an integrated development environ-
ment (IDE) for software development [CR08]. The underlying technology of the ECLIPSE
PLATFORM [Eclb] implements a set of generic concepts for loosely coupling software
components at runtime. This architecture is built upon the Open Services Gateway ini-
tiative (OSGi) component platform. The platform can flexibly be extended by plug-ins,
so-called “bundles” in the OSGi/ECLIPSE terminology, which are loaded into the com-
mon platform at runtime. The use of this technology allows to combine functionality of
different kinds, which are not a-priori conceptually interwoven but are aimed to be related
to each other. Using this mechanism, the ECLIPSE PLATFORM allows to integrate tooling
functionality in a single place, without requiring the components to be dependent on each
other at design time, which makes development easier and independent from each other.
This architecture has been utilized to integrate the above implementation technologies and
offer tooling support in a single place.

One set of functionality especially related to handling models is provided by bundles from
the Eclipse Modeling Framework (EMF) [Ecla]. Once these bundles are added to the
ECLIPSE IDE, they provide functionality to define modeling languages, create editor com-
ponents for models, allow users to interactively edit model instances, and provide mech-
anisms to serialize model instances to permanent storage, and load them back from there
again.

The EMF includes an object-oriented general purpose modeling language (GPML) called
ECORE [SBPM09], which is used throughout the framework as a modeling language for
defining the types and their interrelations for other modeling languages. It is thus used
as a meta-modeling language for specifying other, typically domain-specific, modeling
languages, which then can be further processed by components of the EMF. Using these
components, tooling support for realizing the methodical steps proposed by the SEEM
method has been created, which is shown in the following.

12.5.1 Mapping model editor

An editor for mapping models is required by the method to allow manual adjustments of
the default values generated as default implementation strategies, and to supply additional
manual decisions where required.

Tooling support to edit mapping models is offered by a non-graphical tree-structure editor,
which integrates into the ECLIPSE development environment and gets automatically de-
rived from the meta-model specification of the mapping model language [Gro09a]. Only
minor manual adjustments have been made to the genmodel, which is a component of
the EMF mechanism to automatically generate model editors from meta-model specifica-
tions.

Detail attributes of model elements are displayed in a separate part of the GUI, which is
the properties view. If active, the properties view is typically shown at the bottom-middle
of the ECLIPSE window. Attributes are displayed there are a set of key-value pairs in a

237



two-column table, with the name of the attribute in the left column, an the value of the
attribute in the right. The value of the attribute can be edited, with corresponding GUI
widgets according to the attribute’s type.

The mapping model editor is able to supplement the main purpose of the mapping model,
which is to bind together elements from multiple modeling languages, with adequate func-
tionality. The editor achieves this by offering editor functionality for referenced languages
as well, which means that besides providing functionality for editing the core mapping
model entries, the mapping model editor also provides access to the referenced conceptual
enterprise model representation elements on the one hand, and elements from implemen-
tation strategy models or generic implementation strategy model elements on the other
hand.

Editor functionality for EEM representation elements, which are referenced towards one
direction of each mapping entry, allows to browse these elements in detail, and also po-
tentially to edit them, although manual modification of the EEM representation is not
envisioned as a step in the methodical procedure.

Editing facilities for referenced implementation strategy model elements are also offered.
This efficiently supplements the use of the method, since it allows to perform all man-
ual editing activities of models, as they are conceptualized in step 5 of the method (see
Sect. 7.1.5), to be performed in one place, implemented by the single mapping model
editor component.

A screenshot of the mapping model editor in use is shown in Fig. 70.

12.5.2 Implementation strategy meta-modeling with ECORE

The platform underlying to MEMOCENTERNG is an ECLIPSE integrated development
environment (IDE) with additionally plugged-in modeling extensions. As part of these ex-
tensions, the meta-modeling language ECORE [SBPM09] is provided by the core ECLIPSE
MODELING FRAMEWORK (EMF, [Ecla]). It is used to declare modeling language spec-
ifications. The EMF supports the automatic creation of model editors out of modeling
language specifications, which means that tooling support for ECORE-specified modeling
languages is inherently available in the form of automatically generated editors. Further
enhanced with the ECLIPSE GRAPHICAL MODELING FRAMEWORK (GMF, [SBPM09]),
also generation facilities for graphical diagram editors are available.

As a convenient extension to the meta-modeling capabilities already provided by the
ECLIPSE modeling frameworks, MEMOCENTERNG additionally contains the MEMO
META MODELING LANGUAGE (MML, [Fra08]), which internally builds upon ECORE
and the ECLIPSE modeling framework extensions. It simplifies the creation of conceptual
domain-specific modeling languages with graphical diagram editors.

12.5.3 Model-to-model transformations with the XTEND language

A relevant feature for implementing the engineered method is the execution of model-to-
model transformations. Creating and updating the mapping model with reasonable default

238



Figure 70: Mapping model tree structure editor, with references to separate model in-
stances

values accelerates the development of prototypes and helps focusing the attention of soft-
ware architects and developers on those design decisions, which cannot be taken automat-
ically by deriving defaults. The model-to-model transformation from an enterprise model
representation to an initial combination of a mapping model and implementation strategy
models thus serves as a crucial methodical step in performing the shift from a conceptual
business perspective to an implementation-level description.

To implement the required model-to-model transformations, the XTEND language has
been chosen. XTEND has been developed especially for transforming model instances
of ECORE meta-models. It provides programming language constructs which complement
the structural meta-concepts of ECORE with corresponding dynamic semantics for access-
ing and modifying model instance content. The language is available as part of optional

239



extensions to the EMF framework, and can be installed within each ECLIPSE environment.
The fundamental principle of XTEND is to enhance the static structural declaration of a
modeling modeling with dynamic functions that are available to be executed on instances
of model elements, e. g., to query values, modify attributes, create new child elements, etc.
The functions written in the XTEND language may be used in an object-oriented notation,
which makes them appear as if they were object-oriented methods that can be invoked
on instance of model elements during a model transformation or validity check run. The
language follows a functional paradigm, which allows for compact language constructs
to access model elements, e. g., multi-valued attributes and relationships are syntactically
accessed in the same way as single-valued attributes, and the language provides implicit
iteration over sets of multi-valued attributes or relationships, when values queries from
multi-values attributes are further processed.

XTEND model transformations a executed by an interpretation engine, which gets con-
figured with a an input model file, an output file, and a start transformation function to
invoke.

Fig. 71 shows a part of an editor for XTEND scripts in the development environment.
Example XTEND scripts, which have been developed as part of the prototypical imple-
mentation, are listed in Appendices A.3.1, A.3.2, and A.4.2.

12.5.4 Model-checking with the CHECK language

The CHECK language is a mechanism for specifying validity conditions (also called con-
straints) on model-instances. It uses boolean expressions from the XTEND language to
specify validity conditions and is easy to learn and apply for developers who are already
familiar with XTEND.

As part of the method to be engineered, the CHECK language provides a mechanism to find
places in the model where manual editing activities are required by software architects or
developers. Applying model checking thus serves a relevant function in providing guid-
ance for architects and developers in their working processes, by pointing them to places
where design considerations and implementation activities are required.

CHECK scripts that have been developed for the prototypical implementation of the method
are listed in Appendices A.3.1 and A.3.2.

12.5.5 Code generation with XPAND templates

To create executable artifacts from the implementation-level descriptions that are provided
by the mapping model and accompanied implementation strategy models, code generation
facilities are consulted. Code generation serves to create source code in a programming
language, or to output configuration files which control the behavior of higher-level execu-
tion engines, such as workflow engines or script interpreters. See Sect. 12.2 for a detailed
introduction.

Fig. 71 shows the editor for XPAND templates, as it appears inside the common develop-
ment environment, together with the editor for XTEND templates.

240



Figure 71: Editors for XTEND and XPAND scripts in the development environment

241



Figure 72: Built-in menu functionality in the ECLIPSE environment to invoke transforma-
tions and validity checks of the method

12.5.6 GUI components to invoke the transformation steps in the method

The on-board EMF components allow for an integration of the developed transforma-
tions into the ECLIPSE IDE, by wrapping them into MWE workflow scripts, which in turn
can be invoked through the IDE’s Run As... menu. This mechanism is depicted in a
screenshot excerpt in Fig. 72.

An alternative way to invoke the transformations of a configured SEEM method, is to
configure the ECLIPSE GUI to provide additional menu entries and toolbar buttons for in-
voking the transformation scripts. To offer directly visible toolbar buttons in the GUI, a
set of pictorial symbols is to be selected for labeling the buttons, with each symbol repre-
senting the individual transformation steps in a distinguishable way. The transformations
and validity checks to be symbolically represented are 1) the adapter transformation, 2)
the enterprise model validity check, 3) the mapping model initialization, 4) the mapping
model update, 5) the mapping model validity check, and, 6) the code generation. Six dis-
tinct, memorable symbols have been created to represent these steps. They are collected
in Table 2 and are used as button labels in the GUI implementation.

242



Adapter transformation

Enterprise model validity check

Mapping model initialization

Mapping model update

Mapping model validity check

Code generation

Table 2: Button symbols representing the method’s transformations and validity checks

Fig. 73 shows an excerpt of a screenshot, which contains the method-specific menu and
the corresponding GUI toolbar with the specific buttons and symbols chosen above. Every
menu entry and corresponding toolbar button is used to invoke one transformation step in
the method.

Figure 73: Menu and toolbar in the ECLIPSE environment to invoke transformations and
validity checks in the method

12.5.7 EEM model editor for test purposes

Although the method does not require to manually edit enterprise models in their EEM
representation (EEM models are automatically transformed from original enterprise mod-
els, see Sect. 7.1.2), the set of tooling components also includes both a tree-based editor
for EEM models, as well as a diagram editor with a simple graphical notation. Both ed-
itors have been automatically generated by a one-click editor generation feature from the
MEMO Meta-Modeling Language (MML) editor. Screenshots of the editors are displayed
in Fig. 74.

243



Figure 74: Model editors for the internal EEM representation of enterprise models

244



Part V

Reflection
You could have flown away

A singing bird in an open cage
Who will only fly, only fly for freedom

U2, “Walk On” from the album “All That You Can’t Leave Behind”, 2000

13 Evaluation

When designing physical or conceptual artifacts, a chain of decisions is to be taken, to
realize a concrete result out of the initial ideas which motivated the creation process. De-
signing in this sense means bringing ideas into existence, which is either a physical form
of existence, or intersubjectively shared symbolic existence.

During this process of making ideas concrete, the design decisions taken enforce the de-
signer to balance out between on the hand providing a most comprehensive, precise and
sustainable solution, and on the other hand performing the design process efficiently and
with reasonable efforts. As a consequence, this means that there are cases where it is justi-
fied to create a sub-optimal artifact, for the benefit of a more efficient development process.
Scientific design processes should be completed with a methodical reflection on the cre-
ated artifacts, to explicate the deficiencies that have reasonably been taken into account
when the artifacts were designed [HMP04].

The description of the developed method closes with an evaluation that reflects on the
degree of elaboration reached by the proposed approach. As evaluation method, an ana-
lytical evaluation is applied, by setting the created artifacts and the methodical description
in relation to the requirements initially stated in Sect. 4, and analyzing their architectural
structure, properties, and behavioral features with regard to their contribution to the ful-
fillmenent of the requirements. Each requirement is individually evaluated with respect to
the degree of fulfillment. The results of these considerations are roughly estimated to fit
into the categories “good”, “medium” and “bad”.

Other means of evaluation, e. g., via an observational case study, cannot reasonably be
applied to the proposed development method, because the expenses and efforts to perform
such an evaluation would exceed a method engineer’s capacities by multiple times of the
effort that is required to formulate the method itself [Fra06]. Empirical evaluation is thus
to be considered external to the proposed method. It does not belong to the reflective
evaluation phase at the end of the method design process, but may be carried out in a
distinct research project.

To give an overview on the evaluation, Table 3 summarizes the evaluated status for each
requirement. The degree of fulfillment per requirement is classified using the categories

245



“good”, “medium” and “bad”, which are represented in the overview table by the symbols
+© , © , and -© , respectively.

Req. 1: Provide effective and efficient methodical guidance +©
Req. 2: Support various enterprise modeling languages +©
Req. 3: Support distributed and heterogeneous architectures +©
Req. 4: Provide multi-user support +©
Req. 5: Enable process awareness +©
Req. 6: Enable information awareness +©
Req. 7: Incorporate security aspects -©
Req. 8: Support the use of graphical user interfaces ©
Req. 9: Offer automatic processing capabilities ©
Req. 10: Allow for integration of external software components ©
Req. 11: Allow for integration of organization-specific functionality +©
Req. 12: Handle the abstraction gap between enterprise models and implementa-
tion descriptions

+©

Req. 13: Support performing the ontological turn from a bird’s-eye-view perspec-
tive to an inner system perspective

+©

Req. 14: Incorporate domain experts into the development process ©
Req. 15: Strengthen trust among stakeholders ©

Table 3: Evaluation overview on how requirements are met by the approach

The following paragraphs discuss to which degree each individual requirement is met.

Req. 1: Provide effective and efficient methodical guidance The method suggests
a procedure, which, when followed according to its description, effectively leads from
enterprise models as a starting point to running software applications that make up an EIS.
On this coarse-grained methodical level, software architects and developers are guided
by the instructions of the individual steps in the method, and by the documentation of
components and artifacts they deal with.

In addition to this, an efficient software engineering process is fostered by utilizing three
independent methodical means. At first, the method uses suitable abstractions both in the
conceptual domain of EIS, which is covered by the use of enterprise models, as well as in
the technical domains of diverse target architectures, for which EIS software is generated.
Combining both sides of abstractions gives software architects and developers means at
hand, which allow to describe software systems more efficiently than with other techniques
that either focus on a single domain only, or aim at using generic descriptive means with a
lower degree of semantics. The combination of both sides in an integrated method avoids
these frictions.

246



The second methodical component, which increases efficiency of the development process
compared to methods not specifically dedicated to software development from enterprise
models, is the use of a default-guessing initialization transformation for creating new map-
ping models with accompanied implementation strategy model instances. The initializa-
tion transformation is introduced in Sect. 6.3.2. While the initialization transformation
cannot be expected to always create reasonable default entries, using such a mechanism
can unburden developers especially from repeating lowbrow work over and over again. To
capture the most often occurring default cases, the initialization transformation script can
also be modified to automatically grasp project-specific default cases, or to parse specific
hints in the enterprise models (EMs) which control the automatic default detection.

The third introduced methodical means for supplementing an efficient application of the
method is the use of validity checks after every automatic model transformation step in the
method with optional subsequent manual editing activities. These checks are introduced
in Sect. 6.4. On the one hand, the validity checks help to prevent mistakes in later steps
of the method, by checking whether the validated model instances carry content which is
complete and consistent to be used for subsequent processing. On the other hand, the result
of a failed validity check delivers a list of problem locations in the models, which can be
used by a wizard-style GUI tool to automatically guide software architects and developers
through the set of affected model instances, until all problems are resolved.

The method provides multiple simultaneous approaches to foster development efficiency.
It allows for realizing innovatively efficient development processes by separating duties
and responsibilities along adequate lines of responsibility. From the point of a theoret-
ical reflection, the methodical requirement for an increase of development efficiency by
providing advanced methodical guidance is thus fulfilled, and it is theoretically justified to
expect increased development efficiency in concrete engineering projects. Following these
arguments, the requirement is in total evaluated as being fulfilled well, shown by the +©
symbol in the overview table.

Req. 2: Support various enterprise modeling languages An important requirement
from a scientific perspective is the demand for keeping the method open to using any en-
terprise modeling language (EML) or family of EMLs. By keeping the method adaptable
to any set of languages, it is proven that the method offers a generic solution to a class of
problems, not only to a single modeling use-case constellation.

The requirement is fulfilled by the use of the EEM language, introduced in Sect. 6.2.1,
and the adapter transformation, introduced in Sect. 6.3.1, which creates a model instance
in the EEM language as output. The EEM instance serves as an intermediate means of
expressing domain-specific semantics. This mechanism allows to decouple the entire fur-
ther processing steps in the method from the original EMs, and makes any set of EMLs
pluggable to the method, by developing suitable adapter transformations.

The adapter transformation also allows to use conceptual modeling languages which are
not fully capable of expressing all the required enterprise model semantics, e. g., the busi-
ness process modeling language Business Process Modeling Notation (BPMN), which
misses an elaborate resource description perspective. The adapter transformation can en-

247



rich the transformed EEM instance with additional concepts from other auxiliary models,
which, e. g., declare actors and resources referenced in the BPMN model.

Since the methodical approach fully allows to decouple the software engineering process
from any concrete underlying EML, the requirement for using diverse EMLs with the
method is regarded as completely fulfilled, it is thus marked with a +© symbol in the
overview table.

Req. 3: Support distributed and heterogeneous architectures The requirement for
supporting the development of a distributed software system, with multiple participat-
ing, remotely distributed components, is met by the method through several independent
means.

One aspect related to distributed system development is the ability to describe individ-
ual remote system components, and distinguish both between multiple human actors and
multiple automatic processing nodes in the distributed environment. The method takes
this into account by offering concepts for giving fine-grained explications of actors, re-
sources, and accesses to resources, using the formal concepts AbstractActorIm-
plementation, described in Sect. 9.2, AbstractResourceImplementation,
explained in Sect. 9.3, and AbstractResourceAccessImplementation, intro-
duced in Sect. 9.3.4.

Another relevant aspect of distributed systems is the coordination of control flow among
multiple participating nodes and possibly involved human actors. The method handles
this by offering the notion of sequence implementation strategies (see Sect. 9.1.5), which
specifically cover the implementation view on this system aspect, and allow, e. g., to dis-
tinguish between control flow passed locally on the same front-end device, or remotely to
a different system component.

The prototypical implementation realizes a basic distributed architecture by grounding on
a client-server approach, as it is designed in the domain API given in Sect. 6.5.

The notion of a heterogeneous system environment, in which different hardware platforms,
different operating systems, and different interaction protocols are combined together to
form a comprehensive EIS, is also supported by the method. This is achieved by us-
ing individual implementation strategy models in their own architecture-specific modeling
language, specified via meta-models. Sect. 6.2.3 describes this approach in detail.

Incorporating meta-modeling techniques to explicate architecture-specific and technology-
dependent component types in a model-driven engineering method is an innovative ap-
proach to cope with system heterogeneity. The use of this technique is also thorough-
ly demonstrated by the prototypical application of the method, during which two
architecture-specific meta-models and corresponding model instances are created.

Altogether, the variety of available means for dealing with distributed system engineering,
and the included prototypical realization of a basic distributed system for further expla-
nation of the method, make it appear justified to evaluate the support for distributed and
heterogeneous environments as good, marked in the overview table above with the +©
symbol.

248



Req. 4: Provide multi-user support Support for multi-user systems, which is an in-
herent demand towards distributed systems for organizations, is offered by the method
through the integration and disambiguation of actor concepts, using the AbstractAc-
torImplementation and AbstractActorResolverImplementation strate-
gies, introduced in Sections 9.2 and 9.1.5.

By integrating the organization perspective of EMLs into the engineering method, the
notion of a multi-user system is modeled on a highly abstract, domain-specific level, which
is well suited for being consulted as the basis for engineering software components that
implement multi-user support.

Due to the comprehensive set of multi-user concepts offered by the method, the overall
support for developing multi-user software systems is evaluated as having reached the
requirements well. This is indicated by the +© symbol in the overview table.

Req. 5: Enable process awareness The requirement for being process-aware can be
explicated as the demand towards the method to efficiently make use of conceptual knowl-
edge specified via business process models (BPMs), and to provide means to foster the
development of process initiation mechanisms and process control implementations, in-
cluding resource handling and user management capabilities, in distributed EIS compo-
nents.

The method provides a rich set of concepts which give support for spanning the interpre-
tational bridge from conceptual BPMs to executable software. With regard to the indi-
vidual elements of a business process, which are process-steps and events, the concept of
a ProcessMemberMapping entry in the mapping model allows to associate instances
of subclasses of AbstractProcessMemberImplementation to declare any pos-
sible detail information about how to represent this process-member in a software system.
This pattern is introduced in Sect. 6.2.2. An implementation for a process-member can
make use of any functionality a software system can perform, including user interaction
via a GUI on an EIS front-end, automatic computation without interaction, or invocation
of external software components.

Each individual process-member is embedded in a set of specifications regarding the dy-
namics of a BPM. This includes the flow of control among process-members, i. e., the
logical order in which process-members can occur in a concrete process realization, the
flow of information objects, which may be shared among the implementations of different
process-members, and, among others, the flow of responsibility, i. e., changes through-
out the process with regard to human operational and managerial responsibility for carry-
ing out the process-step. The method also provides means for explicating software tech-
nical interpretations of these relationships. The notion of control flow implementations
and flows of responsibility are handled by SequenceMapping entries in the mapping
model, which refer to three types of implementation strategies. These describe the con-
trol flow handling as subclasses of AbstractControlFlowImplementation and
AbstractConditionImplementation, responsibility handling is realized by con-
crete subclasses of the AbstractActorResolverImplementation implementa-
tion strategy, which take care of assigning concrete human users as responsible actors

249



to process-step instantiations at runtime. These concepts are introduced in Sect. 9.1.5.
Implementations for data-flow handling, which is another aspect of dynamics in BPMs,
are modeled via resource access implementation strategies specified as subclasses of Ab-
stractResourceAccessImplementation (see Sect. 9.3.4).

With the comprehensive set of methodical concepts to cover the technical interpretation
of BPMs, and the elaboration of corresponding example implementation strategies, the
degree of fulfillment for this requirement can be evaluated as complete for the purposes of
the method. The result is thus marked with a +© symbol in the overview table.

Req. 6: Enable information awareness Requiring a development method to foster
“information-aware” EIS implementations, as they are called in the course of the method’s
elaboration, demands for methodical means that explicate the implementation-level hand-
ling of information. Handling of information is one central purpose an EIS is supposed to
fulfil, and also a general purpose of any software system in a broader sense.

The method provides a broad variety of concepts to lead from information conceptualiza-
tions in enterprise models to corresponding implementations in a software system. Re-
sourceMapping entries in the mapping model bind conceptual resource specifications,
which describe information resources, to information resource implementation strategies
specified as subclasses of the abstract meta-class AbstractInformationResour-
ceImplementation. These concepts are elaborated in Sect. 9.3.1. Resource imple-
mentation strategies are conceptualized as consisting of two orthogonal aspects, which are
information object types, and information object storages, represented by subclasses of the
meta-classes AbstractInformationTypeImplementation and Abstract-
InformationStorageImplementation, respectively (see Sect. 9.3.1).

The way how information objects are accessed is orthogonally modeled as subclasses
of the AbstractResourceAccessImplementation meta-class. Example imple-
mentation strategies for this are introduced in Sect. 9.3.4.

Retrieving and storing information is modeled by the method in form of a life-cycle pattern
implicitly associated with each process-member implementation. This pattern assumes
that before any process-member implementation is executed, it fetches information ob-
jects either from a persistent or temporary storage, then executes the core process-member
functionality, and afterwards optionally stores information objects back to persistent or
temporary storages. This life-cycle model, introduced in Sect. 9.3.4, guides the software
architects’ and developers’ declarations of how information access is implemented.

For the overall evaluation of the method’s capabilities the methodical means provided
by the approach appear complete to serve the method’s purpose in fostering an efficient
engineering process. The degree of fulfillment of this requirement is thus rated good,
which is shown in the overview table by the +© symbol.

Req. 7: Incorporate security aspects Handling security aspects may be valued with
different relevance, depending on the purpose and situation of an organization. For those
organizations that require a specifically high degree of security, either because they handle

250



especially sensitive products, or they own a competitive position which makes them ex-
traordinarily vulnerable towards security attacks, the method does not yet cover sufficient
suggestions for incorporating security aspects.

Taking care for security could be realized on multiple levels in the method. At first, the
EEM representation could incorporate aspects of security by introducing organizational
security concepts, such as indisputability of user interaction, authenticity of electronic
documents, or the two-eye principle in performing sensitive actions. In addition to realiz-
ing these organizational security issues with technical means on the implementation level,
technical security properties, e. g., the use of encrypted data transmission, can be taken
care of by corresponding security-aware implementation strategies.

An elaboration of how to extend the method for the development of security-aware EISs
appears possible from the current state of maturity of the method, but is not included in
the elaboration yet. Since its realization is unavailable, the degree of fulfillment of this
requirement is considered insufficient and marked with the -© symbol in the overview
table.

Req. 8: Support the use of graphical user interfaces The requirement for realizing
front-end functionality that uses graphical user interfaces (GUIs) has been partially met by
incorporating GUI conceptualizations in the method as described in Sect. 8.2.

The GUI sketches given in that section provide a rudimentary methodical basis for apply-
ing the method with an underlying user interface conceptualization. Further elaboration is
not available, especially the creation of GUI functionality specific to single process-steps
is not discussed during the method elaboration. The prototypical method application in
the introductory example in Sect. 2, however, contains sketches for the implementation
of a form-based GUI generator, which derives form entries from data type specifications
associated to information resource elements in the conceptual models.

As an overall rating, the fulfillment of this requirement is rated on a medium level, which
is indicated by the © symbol in the overview table.

Req. 9: Offer automatic processing capabilities For supporting the development of
automatic processing steps as part of implemented business processes some concepts are
offered by the method. Among them are the notion of a process-step’s life-cycle, which
starts with fetching information, then performs its processing task, and in the end option-
ally stores information objects back to a temporary or a persistent storage. This general
process life-cycle pattern, which is introduced in Sect. 9.3.4 allows to specify data-flows
between different process-steps, and makes it possible to implement the conceptual notion
of information objects in technical terms of data, which can be read and written from or to
a persistent storage.

Other aspects of implementing automatic functionality in an EIS are not covered by the
current version of the method. E. g., in a distributed environment, the design decision has
to be made on which physical node automatic functionality is to be performed, i. e., which
computer in a distributed network actually performs the automatic tasks. If the decision is

251



to be taken between a local client executing functionality, and a central server component,
the decision resembles a balance between a fat-client solution, where automatic process-
ing is mostly rolled out to the client, and a thin-client solution, in which processing on
the server side is preferred. The method offers no concept to explicate this design deci-
sion on an abstract level. This kind of localizing functionality in the distributed system is
left to lower-level architectural decisions, e. g., using the WebService resource imple-
mentation strategy (see Sect. 9.3) to declare web-services running on specific nodes in the
network, and invoking them from other nodes via a realization of the WebServiceCall
process-step implementation strategy (see Sect. 9.1).

As an overall rating, the method only goes half the way of efficiently supporting the devel-
opment of automatic functionality, which is why the corresponding requirement is eval-
uated with a medium degree of fulfillment, indicated by the © symbol in the overview
table.

Req. 10: Allow for integration of external software components The method pro-
poses fundamental abstractions that prepare the use of implementation strategies for inter-
facing to external software components. Among these abstractions are the meta-class Ab-
stractSoftwareResourceImplementation introduced in Sect. 9.3, which rep-
resents the notion of interpreting a conceptual resource specification as describing a de-
ployed and accessible piece of software. As example implementation strategies, the meta-
classes ExternalApplication and WebService (see Sect. 9.3.2) represent imple-
mentation strategies to access external application components. They are accompanied
by the two process-step implementation strategies WebServiceCall and External-
ApplicationAccess, which serve to describe the invocation of external components
of these kinds (see Sect. 9.1.3).

With the concepts introduced, the method provides an elaborated skeleton for describing
an approach of how to implement access to external software components in the course of
the engineering process. However, the available example strategies are too generic to give
full insight into the potential of the approach. E. g., the ExternalApplication meta-
class does not distinguish between different invocation methods for external applications.
The notion of parameters is neither explicated by the meta-class ExternalApplica-
tion, nor is the notion of how to pass parameters specified with the ExternalAppli-
cationAccess meta-class. These fine-grained acts of interpretation are left to the code
generation templates. They may contain a list of referenced applications based on the
application name, and decide how to pass parameters to the external component.

Since the overall abstract conceptualization of external software access is available, but the
concepts are not further refined by the method, the degree of fulfillment of the requirement
for integration of external software is evaluated to be on a medium degree. In the overview
table, this is shown by the © symbol.

Req. 11: Allow for integration of organization-specific functionality The require-
ment for allowing to integrate organization-specific software functionality into EIS is met
by the engineering method’s capabilities for architecture-specific enhancements. The map-

252



ping model language specification, which is presented in Sect. 6.2.2, offers a set of ab-
stract classes that serve as explicit extension points for adding new specific implementa-
tion strategies. Organization-specific functionality can be explicated via implementation
strategy meta-models and corresponding model instances, introduced in Sect. 6.2.3.

The method also comprises traditional solutions to incorporate special functionality by
program code that gets developed using traditional programming skills. Examples for
implementation strategies that offer this fallback solution are the process-step implemen-
tation strategy CustomCode (see Sect. 9.1.3), and the resource implementation strategy
CustomResource (see Sect. 9.3.2).

The combination of implementation strategy meta-modeling, and emphasizing of exten-
sion points in the mapping meta-model, qualifies the approach to be evaluated as fully
supporting the integration of organization-specific functionality. The requirement is thus
marked in the overview table with a +© symbol.

Req. 12: Handle the abstraction gap between enterprise models and implementation
descriptions A central methodical means for performing the required bridging between
abstract domain-specific enterprise model concepts on the one hand, and technically con-
crete constructs describing desired target output artifacts on the other hand, is offered by
explicit language constructs in the mapping model language introduced in Sect. 6.2.2. A
mapping model entry is a modeling construct, which allows to formally express how con-
ceptual elements from the enterprise models are interpreted in technical terms. The use
of such a construct as a central part of the development procedure allows for a controlled
bridging between both levels of abstraction.

From an evaluation perspective, the dedicated concepts for reflecting design decisions
taken to interpret the conceptual semantics of enterprise models provide an effective solu-
tion for methodically grounding a domain-specific development approach on conceptually
modeled knowledge from a non-technical organizational business perspective. The good
evaluation result for the fulfillment of this requirement is represented by a +© symbol in
the overview table.

Req. 13: Support performing the ontological turn from a bird’s-eye-view perspective
to an inner system perspective Dedicated means are offered by the method for turning
the description perspective from an overall bird’s-eye-view, which is the ontologic point
of view taken in by enterprise models, to an inner description perspective of a technical
system specified relative to an underlying technical architecture. This is achieved by in-
troducing the notion of implementation strategies (see Sect. 6.2.2), which are conceptual
means for representing technical components in models independent from the actual arti-
facts which realize the components. The notion of an implementation strategy allows to
conceptually refer to implementation artifacts before they actually exist. Having this mod-
eling construct at hand enables to formally express intended design decisions with respect
to model elements in the conceptual enterprise models. This is the key idea which makes
the ontological turn possible. Once a mapping model is completely set up with associa-
tions between enterprise model concepts and implementation strategies, subsequent steps

253



of the development procedure can exclusively focus on realizing the included implemen-
tation strategies, without the need to know about the conceptual motivations behind the
chosen strategies. This way, the mapping model structure becomes a methodical anker
point, which is initially used to interlink different description perspectives by capturing
design decisions, and then allows to neglect the conceptual origins, and perform a model-
driven artifact generation procedure which is entirely operating in terms of implementation
artifacts operating relative to a technical system architecture.

The method provides an elaborated approach for supporting the development process in
performing the required ontological turn from conceptual modeling constructs to technical
system descriptions. Dedicated methodical means for this are provided by notion of im-
plementation strategies. The degree of fulfillment of this requirement is thus rated good,
and displayed with a +© symbol in the overview table.

Req. 14: Incorporate domain experts into the development process The method de-
mands that enterprise models are to be created and maintained in collaboration of multiple
stakeholder groups, attended by a software architect who knows about necessary conven-
tions that have to be considered during modeling. Besides demanding for inclusion of the
software architect among the groups of stakeholders, the process of enterprise modeling
by itself is not in focus of the method. Instead, it is assumed that enterprise models are
existing as a starting point of the method, and that they can be edited, if this turns out to
be required by the subsequent processing steps of the method.

The method provides a suitable framework for the inclusion of domain experts in the
conceptual modeling work, however, it does not suggest any explicit methodical means
that further foster expert integration beyond participation in enterprise modeling activities.
Altogether, the degree of fulfillment of the requirement for incorporating domain experts
is thus achieved on a medium level. This is shown in the overview table using the ©
symbol.

Req. 15: Strengthen trust among stakeholders Trust is established by an active par-
ticipation of the domain stakeholders in the conceptual modeling process, and the use of
the defined engineering method that bridges from the conceptual models to the software
system. This way, the modeling activities of the domain’s stakeholders actively shape the
development process. This fosters mutual understanding, and increases efficiency when it
comes to clarifying those aspects of knowledge explicated in models, which turn out to be
not self-evident for all involved participants in the development process.

The described effects implicitly arise from the use of a methodical procedure in the sug-
gested way. Besides this, the method does not introduce explicit means to additionally
foster trust. The overall evaluation of the degree, with which this requirement is fulfilled,
is thus rated on a medium level, indicated in the overview table by the © symbol.

254



14 Remaining Work

The presented work has shown the conceptualization of a software engineering method,
which spans the entire range from interpreting conceptual enterprise model semantics,
through providing explicit means for capturing design decisions about how to techni-
cally realize enterprise information system (EIS) functionality, to incorporating a code-
generation phase during which deployable artifacts are created. A number of methodi-
cal problems go together with the aim of supporting the complex bridging from domain-
specific conceptual enterprise models to implemented software systems, which, to the ex-
tent evaluated in Sect. 13, have been solved by offering appropriate methodical means with
prototypical tooling support.

As with any scientific work, a countless number of open research questions remain and can
continue the considerations made in the present work. The suggested method primarily fo-
cuses on consulting business process models, resource models, and organization models,
each as distinct perspectives on an organization. They are used for deriving formalized
knowledge to support software engineering. Enterprise models, however, may contain a
richer set of perspectives on organizations, e. g., they can cover strategic perspectives,
which describe long term goals and high-level purposes of organizations, or they may
model inter-organizational aspects, such as business relationships or physical transport
routes to other organizations. It remains a topic of interest to investigate, to which ex-
tent these conceptual sources of information can fruitfully be utilized to foster software
engineering activities in the field of EIS development.

Integrating the SEEM method as a concrete development procedure into a wider methodi-
cal framework with project management facilities could further be examined. This would
mean to fill-in the abstract methodical perspectives and steps identified by a more general
framework, with concrete methodical descriptions offered by the SEEM method. One pos-
sible framework for performing such an integration could be the Rational Unified Process
(RUP) (see Sect. 5.3.2).

The requirement towards security in an EIS (see Req. 7) is not explicitly accounted for
by the proposed method. Extending the methodical elements by aspects of security would
open up a wide field of further research tasks, related to the question how conceptual de-
mands for security can be expressed as part of domain-specific enterprise models, and how
these concepts are appropriately mapped onto available security technology implementa-
tions. The abstract base concepts provided by the SEEM method, especially the notion
of a mapping model which relates enterprise model concepts to according implementation
strategies, provide an elegant mechanism to be extended for these purposes.

To increase the degree of interactive support offered by the method, it remains eligible to
further elaborate the automatic validity checks suggested by the method (see Sect. 6.4) to
an interactive procedure, supported by appropriate wizards to query relevant design de-
cisions from software architects interactively. The creation of an initial mapping model
would no longer rely on automatically derived defaults only, but an automatic mechanism
could offer multiple variants for alternative implementation strategies to a software devel-
opment expert, from which the most suitable can be chosen.

255



The mapping meta-model as presented in the method description (see Sect. 6.2.2) includes
a number of example implementation strategies, which are assumed to be applicable on any
target architecture platform. This is the reason why they have been included in the mapping
model language for purposes of explaining the method. However, any concrete implemen-
tation strategy declaration should be separated from specifications of the core concepts of
the mapping model. Instead, the example platform-independent implementation strategies
given in the mapping meta-model should be specified in their own implementation strat-
egy meta-model, which would include all platform-independent implementation strategy
types suggested by the method. The core mapping meta-model would still provide abstract
superclasses to interface to, but would be kept independent from any concrete implementa-
tion strategy declaration. Despite providing a cleaner conceptual distinction between core
concepts of the mapping model language, and contingent example implementation strate-
gies, this way of organizing model artifacts would allow for easier extension of the set of
available platform-independent implementation strategies with project-specific additional
strategies.

The method could be applied for creating self-reflective EISs (see Sect. 5.3.10), if non-
standard target domain APIs were developed, which integrate EIS functionality and enter-
prise modeling environment (EME) features. The concrete EME to be integrated by the
domain APIs should be the same EME as used for editing the enterprise models that serve
as conceptual input to the engineering method and describe required EIS functionality. If
such an integration could be achieved, a truly self-reflective EIS in the sense of [FS09]
would be available. Since the proposed approach integrates EIS and EME at development
time, it can be assumed that the method is suitable for the development of self-reflective
EIS, once orthogonal research on the architecture of self-referential EIS has been carried
out.

256



Appendices
When I was a very small boy
Very small boys talked to me

Now that we’ve grown up together
They’re afraid of what they see

New Order, “True Faith” from the album “Substance”, 1987

A Example software artifacts

A.1 Source code packages of the provided examples

The software developed for exemplifying purposes as part of the SEEM method is avail-
able as open-source software, consisting of multiple source code project-folders to be im-
ported into the workspace of a MEMOCENTERNG [GF10] environment. MEMOCEN-
TERNG is a modeling platform, which is based on the ECLIPSE [Eclb] IDE, enhanced
with both a set of pre-installed ECLIPSE features, such as the Eclipse Modeling Frame-
work (EMF) and Graphical Modeling Framework (GMF), and with additional domain-
specific modeling functionality specifically designed to provide model editors for the
Multi-Perspective Enterprise Modeling (MEMO) [Fra12] family of modeling languages.

The SEEM source code projects can be downloaded from the SVN [Apaa] repository at
http://www.seem-method.info/svn/repo-seem.

Further technical information about the installation and use of the source code
projects is available in the README file http://www.seem-method.info/svn/
repo-seem/trunk/de.gulden.modeling.seem.workflow/readme.txt.

Refer to http://www.seem-method.info/ for any updates and further informa-
tion about the provided online resources.

The project-folders in the SVN repository are briefly described in the following.

A.1.1 Package de.gulden.modeling.seem.eem

In this package, the meta-model of a the rudimentary EEM language is provided, which is
used by the method as proposed interchange format for adapting different source enterprise
modeling languages. The meta-model is formulated using the MML [Fra08]. Consequen-
tially, the source code for corresponding tooling support to use the specified language, is to
be generated by means of the MML editor generation functionality [GF10]. This is done
by opening the file eem.meta_diagram after checking out the project, and invoking
the “Generate Model Editor” function with the corresponding button in the menu panel.

257

http://www.seem-method.info/svn/repo-seem
http://www.seem-method.info/svn/repo-seem/trunk/de.gulden.modeling.seem.workflow/readme.txt
http://www.seem-method.info/svn/repo-seem/trunk/de.gulden.modeling.seem.workflow/readme.txt
http://www.seem-method.info/


A.1.2 Package de.gulden.modeling.seem.generator

This package assembles transformation declarations, scripts, and utility functions to sup-
port those parts of the SEEM method automatically, which are generic with respect to
the used original enterprise modeling languages, and the chosen target generation archi-
tecture of a development project. This means, source packages of specifically configured
development projects will most likely reference this project to invoke reusable generic
components.

A.1.3 Package de.gulden.modeling.seem.generator.memo

Components specific to applying the SEEM method for use with the MEMO family of
languages are assembled in this package.

A.1.4 Package de.gulden.modeling.seem.generator.ui

This package realizes a plug-in, which adds menu buttons to the GUI of the internally
invoked second ECLIPSE instance. These buttons serve to invoke the adapter transforma-
tion, the enterprise model checking, the mapping model initialization and update trans-
formation, also the corresponding model checking for the mapping model and associated
implementation strategy models, and, finally, the code generation transformation. The GUI
component may be helpful when developing transformation templates, and in development
projects, which use manual development steps as parts of the overall projects. Manual de-
velopment steps can benefit from easy manual invocation mechanisms for the transforma-
tion steps of the method. Essentially, the menu buttons provided in this package, invoke the
respective .mwe scripts from package de.gulden.modeling.seem.workflow.

A.1.5 Package de.gulden.modeling.seem.mapping

The modeling language concepts of the mapping model, as introduced by the method,
are formally defined by the meta-model in this package. As with the other EMF based
modeling languages provided with the examples, the source code for the corresponding
editor support is generated by invoking the EMF “Generate All” function on the provided
.genmodel artifact.

A.1.6 Package de.gulden.modeling.seem.workflow

Transformation declarations, which are specific to the introductory example, and invoca-
tion scripts to run the automatic steps of the SEEM method, are included in this package.
This also covers the code generation templates for outputting project-specific .jsp and
.jspf source code files.

258



A.1.7 Package de.gulden.modeling.seem.architecture.web

This package contains the implementation strategy meta-model for a web-application tar-
get architecture. Since a JSP web-application is the chosen target architecture in the ex-
ample project, this meta-model provides specific implementation strategies for describing
the technical components of such an application. These concepts enhance the generic im-
plementation strategies available with the mapping model. After checking out, the .gen-
model file is to be opened and “Generate all” to be executed from the context menu of the
model’s root element. This generates all required EMF editor source code artifacts. These
files will be written into the src/ folder, and will provide the running implementation of
a tree-style model editor for creating, displaying, and editing model instances conforming
to the specified implementation strategy meta-model.

A.1.8 Package de.gulden.server.xmldb

This component realizes a simple, yet handy, XML database management system
(DBMS). This provides additional runtime functionality, which will be invoked from the
generated JSP code.

The following two packages contain artifacts from the comprehensive example in Sect. 10.

A.1.9 Package org.rescueit.modeling.targetarchitecture

Target architecture components of the comprehensive example are modeled on a type level
by the implementation strategy meta-model included in this package. The meta-model
provides abstractions over a distributed SOA, for which, in the example, executable code
in the BPEL language is generated.

A.1.10 Package org.rescueit.modeling.workflow

Project-specific model transformation declarations, as well as the code generation tem-
plates to output BPEL code for the comprehensive example, are contained in this package.
In its example/ sub-folder, the domain-specific input example model in XML notation
and EEM representation, the created mapping model, the implementation strategy model
instance, and the resulting executable BPEL model with its accompanying WSDL inter-
face declaration are included.

The project-folders listed next are intended to be checked-out into the workspace of a
second MEMOCENTERNG instance, which is launched using “Run / Run As / Eclipse
Application” from the menu. Inside the second instance, the modeling languages declared
and implemented in the first instance are available with corresponding tooling support.

259



A.1.11 Package de.gulden.modeling.seem.api.web

An API, which offers runtime functionality for the generated JSP web-application code, is
contained in this project-folder. This code has been development “manually” by directly
specifying JAVA classes with corresponding methods.

A.1.12 Package de.gulden.modeling.seem.example.webshop

This project-folder contains the original enterprise models of the introductory example in
the MEMO modeling languages, which serve as input to the applied method. During the
transformation, the intermediary generated mapping model and implementation strategy
model files will also be written into this folder.

A.1.13 Package webshop

This is the output folder for the created web application. Generated source code files will
be written into the WebContent/ sub-folder. After code generation, the project is to be
deployed as a web application on a Tomcat [Apab] compatible web-application server.

A.2 Example artifacts overview

The upcoming subsections describe some of the example artifacts, which implement cen-
tral concepts of the SEEM method, or are results of its application. To give an initial
overview on the described components, the following list introduces each artifact briefly.

memo2eem.ext Model-to-model transformation to con-
vert a set of MEMO enterprise models
to an EEM representation. See Ap-
pendix A.3.1.

01-run-adaptEM.mwe Invocation script to run the
memo2eem.ext transformation.
See Appendix A.3.1.

checkEM.chk Conditions to validate completeness and
consistency of an EEM model. See Ap-
pendix A.3.1.

260



checkEMConstraints.chk Generated additional conditions to vali-
date completeness and consistency of an
EEM model’s relationships. See Ap-
pendix A.3.1.

02-run-checkEM.mwe Invocation script to run
checkEM.chk. See Appendix A.3.1.

initMapping.ext Script to create an initial mapping model
with default mapping entries See Ap-
pendix A.3.2.

initMappingWeb.ext Script to create initial default map-
ping entries for a web application tar-
get application platform. See Ap-
pendix A.3.2.

03-run-initMapping.mwe Invocation script to run the creation of
initial default mapping entries. See Ap-
pendix A.3.2.

03-run-updateMapping.mwe Script to update an existing mapping
model and associated implementation
strategy models. Earlier modifications
are preserved. See Appendix A.3.2.

checkMapping.chk Conditions to validate completeness and
consistency of platform-independent en-
tries in a mapping model. See Ap-
pendix A.3.2.

checkMappingConstraints.chk Generated additional conditions to val-
idate completeness and consistency of
platform-independent entries in a map-
ping model. See Appendix A.3.2.

04-run-checkMapping.mwe Invocation script to perform validity
checks. See Appendix A.3.2.

261



web/main.xpt Main code generation script for creat-
ing the web-application. See Ap-
pendix A.3.3.

common.ext Extension functions shared by multiple
components. See Appendix A.3.3.

05-run-generator.mwe Invocation script to run main.xpt.
See Appendix A.3.3.

workflow.properties Global code generation configuration.
See Appendix A.3.3.

conventions.properties Conventions configuration for model
transformations and code generation.
See Appendix A.3.3.

webshop.process The MEMO process model perspective
model. See Appendix A.3.3.

webshop.organisation The MEMO organization perspective
model. See Appendix A.3.3.

webshop.resml The MEMO resource perspective
model. See Appendix A.3.3.

webshop.eem A streamlined EEM representation of
the MEMO input models for further
processing. See Appendix A.3.3.

webshop.mapping The mapping model used in the ex-
ample project, generated by the map-
ping model initialization transformation.
See Appendix A.3.3.

index.jsp Generated main page of the web appli-
cation. See Appendix A.3.4.

The following artifacts originate from the comprehensive example implementation (see
Sect.10):

262



scm-to-eem.xslt Model-to-model XSLT transformation
of the comprehensive example to con-
vert a supply chain modeler file to
an EEM representation. See Ap-
pendix A.4.1.

01-run-adaptEM.mwe Invocation script to run the scm-
to-eem.xslt transformation to-
gether with the id conversion make-
ids.xslt. See Appendix A.4.1.

initMappingSOA.ext Script to create initial default mapping
entries for a SOA target application plat-
form. See Appendix A.4.2.

03-run-initMapping.mwe Invocation script to run the creation of
initial default mapping entries for the
SOA target architecture. See Ap-
pendix A.4.2.

04-run-checkMapping.mwe Invocation script to perform validity
checks on a mapping model and a SOA
implementation strategy model. See
Appendix A.4.2.

soa/main.xpt Main code generation script for BPEL
code generation. See Appendix A.4.3.

05-run-generator.mwe Invocation script to run main.xpt for
BPEL code generation. See Ap-
pendix A.4.3.

00-run-all.mwe Combined workflow script to invoke all
individual transformation steps in one
sequence. See Appendix A.4.3.

workflow.properties Global code generation configuration.
See Appendix A.4.3.

263



conventions.properties Conventions configuration for model
transformations and code generation.
See Appendix A.4.3.

GermanScenarioIceCream.xml XML data of the serialized supply chain
example model. See Appendix A.4.4.

SupplyChainProcess.bpel Generated executable BPEL workflow
description as output of the applied
model transformations. See Ap-
pendix A.4.4.

SupplyChainProcessArtifacts.wsdl Generated WSDL interface declaration
for the BPEL workflow model. See Ap-
pendix A.4.4.

SupplyChainProcessSchema.xsd Manually edited XML schema declara-
tion included in the generated WSDL
file. See Appendix A.4.4.

cardinalitiesToConstraints.xpt Code generation declaration to con-
vert cardinality specifications from EMF
meta-models to constraint expressions
in the CHECK language. See Ap-
pendix A.4.4.

run-cardinalitiesToConstraints.mwe Invocation script to run the higher-
order cardinalitiesToCon-
straints.xpt transformation. See
Appendix A.4.4.

These implementation artifacts are described in greater detail in the following sections.

A.3 Introductory example artifacts

To further demonstrate the use of the method, a selection of artifacts developed to apply
the SEEM method as part of the introductory example, are now closer looked at. They
are parts of the implementation of the introductory example given in Sect. 2. Source code
artifacts are usually not printed in their entirety, which is indicated by a “. . . " mark below

264



the last line printed. To get the source codes in full detail, refer to the artifacts as a whole
from the above named SVN repository (see Appendix A.1).

A.3.1 Adaptation to the MEMO enterprise modeling languages

Model-to-model adapter transformation from MEMO enterprise models to an EEM
model The memo2eem.ext script adapts model instances of the MEMO enterprise
modeling language family to the method. The main entry function transforma-
tion(OrganisationModel, ProcessModel, ResourceModel) reads in a
MEMO process model, as well as an interrelated MEMO organization model, and a
MEMO resource model. The generated output of the horizontal model transformation
is an enterprise model representation in the EEM modeling language, which will further
be used in the course of the method.

The example model-to-model transformation is written in the XTEND language (see
Sect. 12.5.3). It gets invoked either by running a “modeling workflow” script using EMF
tooling operations (see Appendix A.3.1), or by choosing the corresponding GUI menu
provided by the prototypical tooling implementation (see Sect. 12.3).

1 /* memo2eem.ext, model-to-model transformation from MEMO models to EEM
2 representation.
3 Written by Jens Gulden, jens.gulden@uni-due.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license. */
5

6 import ecore;
7 import notation;
8 import model;
9 import process;

10 import organisation;
11 import resml;
12 import eem;
13

14 extension common;
15

16 /*
17 * Transforms a set of a MEMO organization model, a MEMO control flow model, and a
18 * MEMO resource model to an Eem model representation.
19 *
20 * Throughout the transformation process, identity among model elements is judged on
21 * String values of name or label attributes.
22 */
23 create eem::EemModel transformation( organisation::OrganisationModel

modelOrganisation, process::ProcessModel modelProcess, resml::ResourceModel
modelResource ):

24 this.clear() ->
25 this.setName(modelProcess.name.clean()) ->
26 this.eMObjects.addAll( modelProcess.processes.viewReferences.view.diagram.name.

clean().asTopLevelProcess() ) ->
27 this.eMObjects.addAll( modelOrganisation.unitsOfWork.asEemActor() ) ->
28 this.eMObjects.addAll( modelProcess.processes.asEemProcess() ) ->
29 this.eMObjects.addAll( modelProcess.events.asEemEvent() ) ->
30 this.eMObjects.addAll( modelProcess.synchronizers.asEemEvent() ) ->
31 this.eMObjects.addAll( modelProcess.sequences.asEemSequence2() ) ->
32 this.eMObjects.addAll( modelProcess.choices.asEemSequence2() ) ->
33 this.eMObjects.addAll( modelProcess.branches.asEemSequence2() ) ->
34 this.handleResources(modelResource) ->
35 this;
36

265



37 /*
38 * Gets the name of the diagram, in which a process element appears.
39 */
40 String view( process::AbstractProcess this ):
41 this.viewReferences.view.diagram.name;
42

43 /*
44 * Gets the name of the diagram, in which an event element appears.
45 */
46 String view( process::AbstractEvent this ):
47 this.viewReferences.view.diagram.name;
48

49 /*
50 * Gets the name of the diagram, in which a stop element appears.

. . .

de.gulden.modeling.seem.workflow/templates/memo2eem.ext: Model-to-model
transformation to convert a set of MEMO enterprise models to an EEM representation.

Workflow script to invoke the MEMO to EEM adapter transformation The 01-
run-adaptEM.mwe script invokes the model transformation engine to execute the
memo2eem.ext model transformation. As part of this “modeling workflow” script, the
MEMO process model, the MEMO organization model, and the MEMO resource model
are loaded into memory from their XML file representations, then the model transforma-
tion engine is spawned with these models as input parameters. After the transformation
has run, the generated in-memory representation of the EEM enterprise model is written
to an XML file, before the workflow script terminates.

The invocation script is written in the MWE language, which provides a rudimentary way
to specify linear sequences of transformation operations on models. The execution engine
for MWE is part of the EMF and associated plug-ins, which also provide corresponding
GUI menus from which a user manually can invoke the workflow script. An alternative
way to invoke the transformation is choosing the corresponding GUI menu provided by
the prototypical tooling implementation (see Sect. 12.3).

1 <!--
2 01-run-adaptEM.mwe, invocation script to run the adapter transformation.
3 Written by Jens Gulden, jens.gulden@uni-due.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license.
5 -->
6

7 <workflow>
8

9 <!-- Workflow script for running conceptual model adaptation. -->
10

11 <!-- Read configuration properties from file 'workflow.properties'. -->
12 <property file="./workflow.properties"/>
13

14 <!-- Derive other properties from loaded properties. -->
15 <property name="modelOrganisation" value="${projectRoot}/model/${projectPrefix}.

organisation"/>
16 <property name="modelProcess" value="${projectRoot}/model/${projectPrefix}.

process"/>
17 <property name="modelResource" value="${projectRoot}/model/${projectPrefix}.resml

"/>

266



18 <property name="output" value="${projectRoot}/model/${projectPrefix}.eem"/>
19

20 <!-- Read MEMO organization model. -->
21 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
22 <modelFile value="${modelOrganisation}"/>
23 <outputSlot value="modelOrganisation"/>
24 </component>
25

26 <!-- Read MEMO process model. -->
27 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
28 <modelFile value="${modelProcess}"/>
29 <outputSlot value="modelProcess"/>
30 </component>
31

32 <!-- Read MEMO resource model. -->
33 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
34 <modelFile value="${modelResource}"/>
35 <outputSlot value="modelResource"/>
36 </component>
37

38 <!-- Run model transformation. -->
39 <component class="org.eclipse.xtend.XtendComponent">
40 <!--fileEncoding value="UTF-8"/-->
41 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/></metaModel
>

42 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="org.eclipse.gmf.runtime.notation.NotationPackage
"/></metaModel>

43 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="org.memo.model.ModelPackage"/></metaModel>

44 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="org.memo.orgml.organisation.OrganisationPackage
"/></metaModel>

45 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="org.memo.orgml.process.ProcessPackage"/></
metaModel>

46 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="org.memo.resml.ResmlPackage"/></metaModel>

47 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.eem.EemPackage"/></
metaModel>

48 <!-- to include common.ext: -->
49 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="de.gulden.modeling.seem.mapping.MappingPackage"/
></metaModel>

50 <invoke value="memo2eem::transformation(modelOrganisation, modelProcess,
modelResource)"/>

. . .

de.gulden.modeling.seem.workflow/01-run-adaptEM.mwe: Invocation script to run the
memo2eem.ext transformation.

Validity constraints for an EEM model The checkEM.chk file contains validity
check constraints, which allow for checking aspects of formal semantic correctness of
an EEM model representation. The constraints are independent from the source enter-
prise modeling language, from which the EEM model instance has been generated. They
can thus be reused across multiple projects that use different enterprise modeling input
languages.

267



The script is written in the CHECK language, which uses the boolean expression syntax of
the XTEND language to specify validity checking rules.

1 /* checkEM.chk, validity constraints for an EEM model.
2 Written by Jens Gulden, jens.gulden@uni-due.de.
3 Licensed under a Creative Commons Attribution 3.0 Unported license. */
4

5 import eem;
6

7 extension common;
8

9 /*
10 * Ensure, that all resource accesses have an access mode set.
11 */
12 context ResourceAccess
13 ERROR "Resource access mode must be specified.":
14 (this.mode != null) && (this.mode.size > 0);
15

16 /*
17 * Prevent inconsistencies between actor-to-process and actor-to-rescoureaccess
18 * associations.
19 */
20 context ResourceAccess
21 ERROR "When resources are accessed and performing actors are specified, at least

one of these actors must also be specified as performing actor of the
Process, which uses the ResourceAccess." :

22 this.performingActors.isEmpty || this.performingActors.exists(e|this.usingProcess
.performedBy.contains(e));

23

24 /*
25 * Make sure all Sequences are part of a parent process.
26 */
27 context Sequence
28 ERROR "A sequence must belong to a process, the field inProcess must be set.":
29 (this.inProcess != null);

de.gulden.modeling.seem.generator/templates/checkEM.chk: Conditions to validate
completeness and consistency of an EEM model.

Generated validity constraints for an EEM model, automatically derived from the
cardinalities in the EEM meta-model. The constraints contained in the checkEM-
Constraints.chk file are automatically derived from the cardinality specifications on
relationships in the EEM meta-model (see Appendix A.4.4). These constraints enhance
the validity checking rules provided in file checkEM.chk by those conditions implicitly
stated with the meta-model.

1 /* Generated file, generator written by Jens Gulden, jens.gulden@uni-due.de.
2 Licensed under a Creative Commons Attribution 3.0 Unported license. */
3

4 import eem;
5

6 extension common;
7

8 //
9 // Tests for validity of cardinality constraints specified in the Ecore meta-model.

10 //
11

12 context Sequence

268



13 ERROR "From for " + this.name + " must be set." :
14 (this.from != null);
15 context Sequence
16 ERROR "To for " + this.name + " must be set." :
17 (this.to != null);
18 context ResourceAccess
19 ERROR "UsedResource for ResourceAccess must be set." :
20 (this.usedResource != null);
21 context ResourceAccess
22 ERROR "UsingProcess for ResourceAccess must be set." :
23 (this.usingProcess != null);

de.gulden.modeling.seem.generator/templates/checkEMConstraints.chk: Generated
additional conditions to validate completeness and consistency of an EEM model’s
relationships.

Workflow script to invoke the constraint checking on an EEM model To per-
form the constraint checking on an EEM model, the modeling workflow script run-
checkEM.mwe configures the required meta-models, loads the EEM instance, and in-
vokes the constraint checking engine with the checkEM.chk and checkEMCon-
straints.chk validity check scripts.

1 <!--
2 02-run-checkEM.mwe, invocation script to run the completeness check for an EEM
3 model.
4 Written by Jens Gulden, jens.gulden@uni-due.de.
5 Licensed under a Creative Commons Attribution 3.0 Unported license.
6 -->
7

8 <workflow>
9

10 <!-- Workflow script for running completeness checks. -->
11

12 <!-- Reads configuration properties from file 'workflow.properties'. -->
13 <property file="./workflow.properties"/>
14

15 <!-- Read enterprise model in eem representation. -->
16 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
17 <modelFile value="${projectRoot}/model/${projectPrefix}.eem"/>
18 <outputSlot value="model"/>
19 </component>
20

21 <!-- Run model checking. -->
22 <component class="org.eclipse.xtend.check.CheckComponent">
23 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/></metaModel
>

24 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.mapping.MappingPackage"/
></metaModel>

25 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.eem.EemPackage"/></
metaModel>

26 <checkFile value="checkEMConstraints" />
27 <checkFile value="checkEM" />
28 <emfAllChildrenSlot value="model" />
29 <abortOnError value="true"/>
30 </component>
31

32 </workflow>

269



de.gulden.modeling.seem.workflow/02-run-checkEM.mwe: Invocation script to run
checkEM.chk.

A.3.2 Mapping model handling

Model-to-model transformation to create an initial mapping model with default en-
tries The central model-to-model transformation of the method is implemented by the
XTEND script initMapping.ext and accompanied, target architecture specific, en-
hancements to this script. It initializes or updates a mapping model by adding mapping
entries for each relevant conceptual element in the enterprise model, and suggesting default
implementation strategies where possible. The main entry functions for performing the ini-
tialization are createMapping(EemModel) to create a new mapping model and up-
dateMappingEntries(MappingModel) to place default initialization values into
that model where possible. createMapping(EemModel) takes an EEM model as in-
put and generates a new mapping model. The existing model is then modified in-place by
updateMappingEntries(MappingModel).

The initMapping.ext script detects possible platform-independent default imple-
mentation strategies. Default settings for architecture-specific implementation strategies
are detected by individual initialization transformations (see Appendix A.4.2).These tar-
get architecture specific mapping model initialization scripts are invoked together with
initMapping.ext in the modeling workflow script run-initMapping.mwe (see
below).

1 /* initMapping.ext, model-to-model transformation to create an initial mapping model
2 with generic entries.
3 Written by Jens Gulden, jens.gulden@uni-due.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license. */
5

6 import mapping;
7 import eem;
8

9 extension common;
10 extension org::eclipse::xtend::util::stdlib::globalvar;
11 extension org::eclipse::xtend::util::stdlib::properties;
12

13 /*
14 * Creates a new, blank mapping model. For every element in the eem model,
15 * that can be referenced via a mapping entry, a blank mapping entry with
16 * a null-reference to a yet unspecified implementation strategy is
17 * created.
18 */
19 create mapping::MappingModel createMapping( EemModel eem ):
20 let modelId = eem.name.without(" ").toLowerCase():
21 this.setName( eem.name.asId() ) ->
22 this.setModelURI( "http://"+modelId+"/1.0" ) ->
23 this.setBasePackage( modelId ) ->
24 this.setEemModel(eem) ->
25 this.clear() -> // clears internal caches
26 this;
27

28 /*

270



29 * Inserts mapping entries for each mapped conceptual model element into the mapping
30 * model.
31 */
32 MappingModel updateMappingEntries( MappingModel this ):
33 // create blank mapping entries for each actor, resource, process and process-

elements that do not exist yet (equality judged on nameOfMapping -equals-
nameOfEemObject )

34 this.actorMappings.addAll( this.eemModel.eMObjects.selectActors().select(e|this.
actorMappings.forAll(ee|ee.name != e.name)).createActorMapping() ) ->

35 this.resourceMappings.addAll( this.eemModel.eMObjects.selectResources().select(e|
this.resourceMappings.forAll(ee|ee.name != e.name)).createResourceMapping()
) ->

36 this.processMappings.addAll( this.eemModel.eMObjects.selectTopLevelProcesses().
select(e|this.processMappings.forAll(ee|ee.name != e.name)).
createProcessMapping() ) ->

37 this;
38

39 /*
40 * Interprets the enterprise model to find generic (platform independent,
41 * computation dependent) implementation strategies for entries in the
42 * mapping model.
43 * These strategies are added to the mapping model, if no
44 * strategy is already set (which might have been manually edited, too).
45 */
46 GenericArchitectureModel updateMapping( MappingModel this ):
47 // create blank mapping entries for each actor, resource, process and process-

elements that do not exist yet (equality judged on nameOfMapping -equals-
nameOfEemObject )

48 (this.genericArchitecture == null) ? (
49 this.setGenericArchitecture( new GenericArchitectureModel )
50 ) : (

. . .

de.gulden.modeling.seem.generator/templates/initMapping.ext: Script to create an initial
mapping model with default mapping entries

Model-to-model transformation to set default mapping model entries for a web ap-
plication target architecture The initMappingWeb.ext transformation suggests
default architecture-specific implementation strategies for a web application architecture.
The main transformation function, which gets invoked to perform the transformation, is
updateMapping(MappingModel). A function with this name should be used by
convention for any newly created architecture adaptation, so it becomes possible to inter-
face to all architecture-specific initializations using the same function.

1 /* initMappingWeb.ext, model-to-model transformation to set default mapping model
2 entries for a web application target architecture.
3 Written by Jens Gulden, jens.gulden@uni-due.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license. */
5

6 import ecore;
7 import mapping;
8 import eem;
9 import web;

10

11 extension common;
12 extension org::eclipse::xtend::util::stdlib::globalvar;
13 extension org::eclipse::xtend::util::stdlib::properties;
14

15 /*

271



16 * Interprets the enterprise model to find architecture-specific entries
17 * for a web application platform. Adds these entries to the mapping model.
18 *
19 * Throughout the transformation process, identity among model elements is
20 * judged on String values of name or label attributes.
21 */
22 WebArchitectureModel updateMapping( MappingModel this ):
23 this.targetArchitectures.typeSelect(WebArchitectureModel).has() ?
24 (this.targetArchitectures.typeSelect(WebArchitectureModel).update(this)
25 -> null) :
26 (let newArchModel = new WebArchitectureModel:
27 this.targetArchitectures.add(newArchModel.update(this)) ->
28 newArchModel
29 );
30

31 /*
32 * Updates web architecture specific mappings.
33 */
34 WebArchitectureModel update( WebArchitectureModel this, MappingModel mapping ):
35 this.setConfigurationFilename( projectPrefix() + ".properties" ) ->
36

37 // guess defaults for ProcessStep implementations
38 mapping.processMappings.processMemberMappings.select(e|e.implementations.isEmpty

() && ((e.processMember.metaType != Process) || e.processMember.
isTargetArchitectureWeb()) ).updateProcessMemberMapping(this) ->

39

40 // guess defaults for ProcessSequence implementations
41 mapping.processMappings.sequenceMappings.select(e|
42 e.actorResolverImplementations.select( e | ( e.eContainer.metaType ==

WebArchitectureModel ) ).isEmpty()
43 ).updateSequenceMappingActorResolver(this) ->
44 mapping.processMappings.sequenceMappings.select(e|e.controlFlowImplementation==

null).updateSequenceMappingControlFlowPass(this) ->
45 mapping.processMappings.sequenceMappings.select(e|e.conditionImplementation==null

).updateSequenceMappingCondition(this) ->
46

47 // guess defaults for Actor implementations
48 mapping.actorMappings.select(e|e.implementations.isEmpty()).updateActorMapping(

this) ->
49

50 // guess defaults for Resource implementations

. . .

de.gulden.modeling.seem.workflow/templates/initMappingWeb.ext: Script to create
initial default mapping entries for a web application target application platform.

Workflow script to initialize the mapping model To integrate the initMap-
ping.ext and initMappingWeb.ext scripts to perform a complete mapping model
initialization together, the modeling workflow script 03a-run-initMapping.mwe is
used.

03a-run-initMapping.mwe loads the EEM model representation into memory, and
subsequently invokes the main entries functions of initMapping.ext and initMap-
pingWeb.ext.

1 <!--
2 03-run-initMapping.mwe, invocation script to initialize the mapping model.
3 Written by Jens Gulden, jens.gulden@uni-due.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license.

272



5 -->
6

7 <workflow>
8

9 <!--
10 Workflow script for initializing a new mapping model from an
11 enterprise model representation.
12

13 The available target architectures are reflected here by invoking
14 architecture-specific initialization transformations.
15 In cases where multiple implementation options are available
16 for more than one target architecture, the order of invoking
17 the initialization transformation specifies the priority of
18 the target architecture to choose. (The transformation coming first
19 has a higher priority.)
20 -->
21

22 <!-- Reads configuration properties from file 'workflow.properties'. -->
23 <property file="./workflow.properties"/>
24

25 <!-- Makes property values available to Xtend's properties extension.
26 conventions.properties contains hints on how to interpret the
27 enterprise model semantics. -->
28 <component class="org.eclipse.xtend.util.stdlib.PropertiesReader">
29 <propertiesFile value="./workflow.properties"/>
30 <propertiesFile value="./conventions.properties"/>
31 </component>
32

33 <!-- Derive other properties from loaded properties. -->
34 <property name="eemModel" value="${projectRoot}/model/${projectPrefix}.eem"/>
35 <property name="outputMappingModel" value="${projectRoot}/model/${projectPrefix}.

mapping"/>
36 <property name="outputArchitectureWebModel" value="${projectRoot}/model/${

projectPrefix}.web"/>
37

38 <!-- Initialize issue reporter. -->
39 <component class="org.eclipse.xtend.util.stdlib.ExtIssueReporter"/>
40

41 <!-- Read enterprise model in eem representation. -->
42 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
43 <modelFile value="${eemModel}"/>
44 <outputSlot value="eemModel"/>
45 </component>
46

47 <!-- Create a new, blank mapping model. For every element in the eem model,
48 that can be referenced via a mapping entry, a blank mapping entry with
49 a null-reference to a yet unspecified implementation strategy is

. . .

de.gulden.modeling.seem.workflow/03-run-initMapping.mwe: Invocation script to run
the creation of initial default mapping entries.

Workflow script to update the mapping model When an existing mapping model is to
be updated instead of overall newly initialized, the run-updateMapping.mwe mod-
eling workflow script is used. Like run-initMapping.mwe, it invokes the update
functions in the scripts initMapping.ext and initMappingWeb.ext, except that
the first initialization phase is skipped, in which a new mapping model is created. The
following steps are identical to the initialization transformation, including the creation of
mapping entries to elements which are not mapped yet, and selecting derived implemen-
tation strategies if none are available in a mapping entry yet.

273



1 <!--
2 03-run-updateMapping.mwe, invocation script to update the mapping model.
3 Written by Jens Gulden, jens.gulden@uni-due.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license.
5 -->
6

7 <workflow>
8

9 <!--
10 Workflow script for updating an existing mapping model.
11

12 The available target architectures are reflected here by invoking
13 architecture-specific initialization transformations.
14 In cases where multiple implementation options are available
15 for more than one target architecture, the order of invoking
16 the initialization transformation specifies the priority of
17 the target architecture to choose. (The transformation coming first
18 has a higher priority.)
19 -->
20

21 <!-- Reads configuration properties from file 'workflow.properties'. -->
22 <property file="./workflow.properties"/>
23

24 <!-- Makes property values available to Xtend's properties extension.
25 conventions.properties contains hints on how to interpret the
26 enterprise model semantics. -->
27 <component class="org.eclipse.xtend.util.stdlib.PropertiesReader">
28 <propertiesFile value="./workflow.properties"/>
29 <propertiesFile value="./conventions.properties"/>
30 </component>
31

32 <!-- Derive other properties from loaded properties. -->
33 <property name="eemModel" value="${projectRoot}/model/${projectPrefix}.eem"/>
34 <property name="outputMappingModel" value="${projectRoot}/model/${projectPrefix}.

mapping"/>
35 <property name="outputArchitectureWebModel" value="${projectRoot}/model/${

projectPrefix}.web"/>
36

37 <!-- Initialize issue reporter. -->
38 <component class="org.eclipse.xtend.util.stdlib.ExtIssueReporter"/>
39

40 <!-- Read enterprise model in eem representation. -->
41 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
42 <modelFile value="${eemModel}"/>
43 <outputSlot value="eemModel"/>
44 </component>
45

46 <!-- Read mapping model. -->
47 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
48 <modelFile value="${outputMappingModel}"/>
49 <outputSlot value="mappingModel"/>
50 </component>

. . .

de.gulden.modeling.seem.workflow/03-run-updateMapping.mwe: Script to update an
existing mapping model and associated implementation strategy models. Earlier
modifications are preserved.

Validity constraints for generic entries in the mapping model The SEEM method in-
tends a phase of manual revision of the mapping model and accompanied implementation

274



strategy models after it has been initialized, because the automatic initialization does not
necessarily find default values for every mapping entry, and if defaults are set, they may
need manual revision to allow for choosing better implementation alternatives.

To retrieve a list of locations in the model which are yet incomplete or inconsistent, the
checkMapping.chk CHECK script is run. Using this list, automatic methodical guid-
ance through the process of revising the model can be provided to software architects and
developers.

1 /* checkMapping.chk, validity constraints for generic entries in the mapping model.
2 Written by Jens Gulden, jens.gulden@uni-due.de.
3 Licensed under a Creative Commons Attribution 3.0 Unported license. */
4

5 import mapping;
6

7 extension common;
8

9 /*
10 * Make sure only information accesses can be sources to an information view process.
11 */
12 context InformationView
13 ERROR "InformationView can only have information access sources." :
14 this.resourceAccessTargets.isEmpty;
15

16 /*
17 * Force names of sequence mappings to canonical form 'sequence.from.name ->
18 * sequence.to.name'.
19 */
20 context SequenceMapping
21 ERROR "Sequence mapping must be named after the scheme 'sequence.from.name ->

sequence.to.name'." :
22 this.name == this.sequence.mappingName();
23

24 /*
25 * Make sure control flow mode is 'Continue', when 'SameUser' is chosen as actor
26 * resolver.
27 */
28 context SequenceMapping
29 ERROR "The 'SameUser' actor resolver can only be combined with the 'Continue'

control flow." :
30 this.actorResolverImplementations.typeSelect(SameUser).isEmpty || (this.

controlFlowImplementation.metaType==Continuous);
31

32 /*
33 * Make sure XML accesses refer to XML resources.
34 */
35 context AbstractXMLAccess
36 ERROR "XML accesses can only refer to resources which are implemented using an

XML type ('"+this.name+"')." :
37 resourceMapping.isEmpty() || (resourceMapping.implementations.typeSelect(

AbstractInformationTypeImplementation).first().metaType ==
XMLInformationType);

38

39 /*
40 * Make sure text accesses refer to text resources.
41 */
42 context TextAccess
43 ERROR "Text accesses can only refer to resources which are implemented using a

text type ('"+this.name+"')." :
44 resourceMapping.isEmpty() || (resourceMapping.implementations.typeSelect(

AbstractInformationTypeImplementation).first().metaType ==
TextInformationType);

45

46 /*

275



47 * Make sure a send e-mail process is properly configured.
48 */
49 context SendEMail
50 ERROR "SendEMail must be provided with all required sender (From), recipient (To)

, Subject and Text content information." :

. . .

de.gulden.modeling.seem.generator/templates/checkMapping.chk: Conditions to validate
completeness and consistency of platform-independent entries in a mapping model.

Generated validity constraints for generic entries in the mapping model, de-
rived from the cardinalities in the mapping meta-model. This script enhances the
checkMapping.chk CHECK script and validates, if required relationships on model el-
ements are set. The constraints contained in the checkMappingConstraints.chk
file are automatically derived from the cardinality specifications on relationships in the
mapping model meta-model (see Appendix A.4.4).

1 /* Generated file, generator written by Jens Gulden, jens.gulden@uni-due.de.
2 Licensed under a Creative Commons Attribution 3.0 Unported license. */
3

4 import mapping;
5

6 extension common;
7

8 //
9 // Tests for validity of cardinality constraints specified in the Ecore meta-model.

10 //
11

12 context MappingModel
13 ERROR "TargetArchitectures for " + this.name + " must contain at least one

element." :
14 (! this.targetArchitectures.isEmpty);
15 context MappingModel
16 ERROR "GenericArchitecture for " + this.name + " must be set." :
17 (this.genericArchitecture != null);
18 context MappingModel
19 ERROR "EemModel for " + this.name + " must be set." :
20 (this.eemModel != null);
21 context ProcessMapping
22 ERROR "Process for " + this.name + " must be set." :
23 (this.process != null);
24 context ManualExternalApplicationAccess
25 ERROR "ExternalApplication for " + this.name + " must be set." :
26 (this.externalApplication != null);
27 context EventResourceCRUD
28 ERROR "Resource for " + this.name + " must be set." :
29 (this.resource != null);
30 context EventResourceCRUD
31 ERROR "Modes for " + this.name + " must contain at least one element." :
32 (! this.modes.isEmpty);
33 context ResourceMapping
34 ERROR "Resource for " + this.name + " must be set." :
35 (this.resource != null);
36 context ResourceMapping
37 ERROR "Implementations for " + this.name + " must contain at least one element."

:
38 (! this.implementations.isEmpty);
39 context ActorMapping
40 ERROR "Actor for " + this.name + " must be set." :

276



41 (this.actor != null);
42 context ActorMapping
43 ERROR "Implementations for " + this.name + " must contain at least one element."

:
44 (! this.implementations.isEmpty);
45 context AbstractInformationStorageImplementation
46 ERROR "Type for " + this.name + " must be set." :
47 (this.type != null);
48 context AbstractComposedConditionImplementation
49 ERROR "Subconditions for " + this.name + " must contain at least 2 elements." :

. . .

de.gulden.modeling.seem.generator/templates/checkMappingConstraints.chk: Generated
additional conditions to validate completeness and consistency of platform-independent
entries in a mapping model.

Workflow script to invoke the validity checks for a mapping model 04-run-
checkMapping.mwe is the modeling workflow script to invoke the previously intro-
duced set of model validity check scripts, checking the mapping model and the associated
implementation strategy models.

The script initially loads the mapping model with all references into memory, the subse-
quently invokes the model checking engine using the checkMapping.chk and checkMap-
pingWeb.chk scripts, and the corresponding auto-generated checkMappingConstraints.chk
and checkMappingWebConstraints.chk scripts.

1 <!--
2 04-run-checkMapping.mwe, invocation script to run the completeness check for a
3 mapping model.
4 Written by Jens Gulden, jens.gulden@uni-due.de.
5 Licensed under a Creative Commons Attribution 3.0 Unported license.
6 -->
7

8 <workflow>
9

10 <!-- Workflow script for running a completeness check on the mapping model. -->
11

12 <!-- Reads configuration properties from file 'workflow.properties'. -->
13 <property file="./workflow.properties"/>
14

15 <!-- Derive other properties from loaded properties. -->
16 <property name="model" value="${projectRoot}/model/${projectPrefix}.mapping"/>
17

18 <!-- Read mapping model (together with referenced models). -->
19 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
20 <modelFile value="${model}"/>
21 <outputSlot value="model"/>
22 </component>
23

24 <!-- Run model checking. -->
25 <component class="org.eclipse.xtend.check.CheckComponent">
26 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/></metaModel
>

27 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.mapping.MappingPackage"/
></metaModel>

277



28 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.eem.EemPackage"/></
metaModel>

29 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.architecture.web.
webPackage"/></metaModel>

30 <checkFile value="checkMappingConstraints" />
31 <checkFile value="checkMapping" />
32 <checkFile value="checkMappingWebConstraints" />
33 <checkFile value="checkMappingWeb" />
34 <emfAllChildrenSlot value="model" />
35 <abortOnError value="true"/>
36 </component>
37

38 </workflow>

de.gulden.modeling.seem.workflow/04-run-checkMapping.mwe: Invocation script to
perform validity checks.

A.3.3 Code generation

Model-to-text transformation template to create executable source code for public
functionality of the web-application Code generation for publicly accessible parts of
the JSP web application is performed by this example model-to-text generation template,
which generates the main index.jsp page.

1 «REM»
2 main.xpt, code generation templates for generating JSP code
3 for a web application target architecture.
4 Written by Jens Gulden, jens.gulden@uni-due.de.
5 Licensed under a Creative Commons Attribution 3.0 Unported license.
6 «ENDREM»
7

8 «IMPORT mapping»
9 «IMPORT eem»

10 «IMPORT web»
11 «IMPORT process»
12

13 «EXTENSION org::eclipse::xtend::util::stdlib::globalvar»
14 «EXTENSION org::eclipse::xtend::util::stdlib::properties»
15 «EXTENSION common»
16

17 «REM»
18 *
19 * Generate a common file header.
20 *
21 «ENDREM»
22 «DEFINE header FOR Object-»
23 <!--
24 Generated file, generator written by Jens Gulden, jens.gulden@uni-due.de.
25 Licensed under a Creative Commons Attribution 3.0 Unported license.
26 -->
27

28 «ENDDEFINE»
29

30 «REM»
31 *
32 * Generate imports.
33 *
34 «ENDREM»

278



35 «DEFINE imports FOR Object-»
36 <%@page import="java.util.*" %>
37 <%@page import="java.util.Date" %>
38 <%@page import="java.io.*" %>
39 <%@page import="java.sql.*"%>
40 <%@page import="org.w3c.dom.*" %>
41 <%@page import="de.gulden.server.xmldb.*" %>
42 <%@page import="de.gulden.modeling.seem.api.web.*" %>
43 <%@page import="de.gulden.modeling.seem.api.web.jsp.BufferWriter" %>
44 «ENDDEFINE»
45

46 «REM»
47 *
48 * Main generation entry point.
49 * Generate index.jsp and included process implementations.
50 *

. . .

de.gulden.modeling.seem.workflow/templates/web/main.xpt: Main code generation
script for creating the web-application.

Shared extension functions for model transformations and code generation The
common.ext script specifies global functions in the XTEND language, which are used as
utilities by other scripts. No function in common.ext is invoked as entry function from
a modeling workflow script, common.ext is exclusively referenced as a library by other
XTEND scripts.

1 /* common.ext, shared extension functions for model transformations and code
generation.

2 Written by Jens Gulden, jens.gulden@uni-due.de.
3 Licensed under a Creative Commons Attribution 3.0 Unported license. */
4

5 import ecore;
6 import mapping;
7 import eem;
8

9 extension org::eclipse::xtend::util::stdlib::properties;
10 extension org::eclipse::xtend::util::stdlib::issues;
11

12 /*
13 * Gets the project prefix from external settings.
14 */
15 String projectPrefix(): GLOBALVAR projectPrefix;
16

17 /*
18 * Gets the input folder containing source models.
19 */
20 String inputPath(): GLOBALVAR inputPath;
21

22 /*
23 * Gets the output file for generation.
24 */
25 String outputFile(): GLOBALVAR outputFile;
26

27 /*
28 * Gets the output file base name for generation, suffix to be appended.
29 */
30 String outputName(): GLOBALVAR outputName;
31

32 /*

279



33 * Gets the output path for generation.
34 */
35 String outputPath(): GLOBALVAR outputPath;
36

37 /*
38 * Gets the temporary directory.
39 */
40 String tmpRoot(): GLOBALVAR tmpRoot;
41

42 /*
43 * True, if debug mode is active.
44 */
45 boolean isDebug():
46 (getProperty("debug") == "true");
47

48 /*
49 * Interprets ProcessSteps to find out the desired target architecture.
50 */

. . .

de.gulden.modeling.seem.generator/templates/common.ext: Extension functions shared
by multiple components.

Workflow script to invoke code generation The 05-run-generator.mwe model-
ing workflow script wraps around the main.xpt template to make it runnable from the
tooling environment.

run-generator.mwe loads the mapping model with all references into memory, and
invokes the code generation engine with the generator entry template in main.xpt.

1 <!--
2 05-run-generator.mwe, invocation script to run the code generation transformation.
3 Written by Jens Gulden, jens.gulden@uni-due.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license.
5 -->
6

7 <workflow>
8

9 <!-- Workflow script for running code-generation. -->
10

11 <!-- Reads configuration properties from file 'workflow.properties'. -->
12 <property file="./workflow.properties"/>
13

14 <!-- Initialize issue reporter. -->
15 <component class="org.eclipse.xtend.util.stdlib.ExtIssueReporter"/>
16

17 <!-- Makes property values available to Xtend's properties extension.
18 conventions.properties contains hints on how to interpret the
19 enterprise model semantics. -->
20 <component class="org.eclipse.xtend.util.stdlib.PropertiesReader">
21 <propertiesFile value="./workflow.properties"/>
22 <propertiesFile value="./conventions.properties"/>
23 </component>
24

25 <!-- Derive other properties from loaded properties. -->
26 <property name="inputFolder" value="${projectRoot}/model"/>
27 <property name="model" value="${inputFolder}/webshop.mapping"/>
28 <property name="outputFolder" value="${projectTarget}/WebContent"/>
29

30 <!-- Read mapping model (together with referenced models). -->

280



31 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
32 <modelFile value="${model}"/>
33 <outputSlot value="model"/>
34 </component>
35

36 <!-- Run code generation. -->
37 <component class="org.eclipse.xpand2.Generator">
38 <fileEncoding value="ISO-8859-1"/>
39 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/></metaModel
>

40 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.eem.EemPackage"/></
metaModel>

41 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.mapping.MappingPackage"/
></metaModel>

42 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.architecture.web.
webPackage"/></metaModel>

43 <outlet path="${outputFolder}"/>
44 <expand value="web::main::generator FOR model"/>
45 <globalVarDef name="projectPrefix" value="'${projectPrefix}'"/>
46 <globalVarDef name="inputPath" value="'${inputFolder}'"/>
47 <globalVarDef name="outputPath" value="'${outputFolder}'"/>
48 <globalVarDef name="tmpRoot" value="'${tmpRoot}'"/>
49 </component>

. . .

de.gulden.modeling.seem.workflow/05-run-generator.mwe: Invocation script to run
main.xpt.

Global configuration file for the code generation process In work-
flow.properties, global settings are specified to configure the code generation
process. These settings include the path to the project root directory projectRoot,
where the model files used throughout the method are stored, and the prefix of filenames
used for storing the models, projectPrefix.

1 # workflow.properties, global configuration for the code generation process.
2 # Written by Jens Gulden, jens.gulden@uni-due.de.
3 # Licensed under a Creative Commons Attribution 3.0 Unported license.
4

5 # -- projectRoot
6 # Specifies the source project root folder where source models and generated models
7 # are located.
8 projectRoot=/home/user/runtime-mml/de.gulden.modeling.seem.example.webshop
9

10 # -- projectTarget
11 # Specifies the target project root folder where generated source code and other
12 # artifacts are written to.
13 projectTarget=/home/user/runtime-mml/webshop
14

15 # -- databaseRoot
16 # Specifies the XML database root directory where generated XML data and schema files
17 # are written to.
18 databaseRoot=/home/user/runtime-mml/webshop/xmldb
19

20 # -- projectPrefix
21 # Specifies a short name for the project, that can be used as name prefix in several
22 # cases.

281



23 projectPrefix=webshop
24

25 # -- tmpRoot
26 # Specifies a temporary directory.
27 tmpRoot=/tmp
28

29 # -- debug
30 # Sets the debug mode.
31 debug=true

de.gulden.modeling.seem.workflow/templates/workflow.properties: Global code
generation configuration.

Conventions configuration for model transformations and code generation To
store external configuration options for conventions about hints that are used in model
transformations and code generation steps throughout the method, the file conven-
tions.properties is used. It declares, e. g., string fragments of identifier names,
which are used to detected element types, or which are to match tagged values that are
queried throughout transformations.

1 # conventions.properties, conventions configuration for model transformations
2 # and code generation.
3 # Written by Jens Gulden, jens.gulden@uni-due.de.
4 # Licensed under a Creative Commons Attribution 3.0 Unported license.
5

6 # Hint to detect superuser role for actors.
7 HINT_ACTOR_ADMINISTRATOR = Administrator, Admin, Root
8

9 # Hint to detect anonymous role for actors.
10 HINT_ACTOR_ANONYMOUS = Anonymous, Public, Customer
11

12 # Hint to detect automatic e-mail sending processes.
13 HINT_PROCESS_EMAIL = E-mail
14

15 # Hint to detect account administration processes.
16 HINT_PROCESS_ADMIN_ACCOUNTS = Administrate accounts, Accounts administrieren
17

18 # Hint to detect account configuration by user processes.
19 HINT_PROCESS_EDIT_MY_ACCOUNT = Edit my account, Mein Konto
20

21 # Hint to detect visit website processes.
22 HINT_PROCESS_WEBSITE = Website
23

24 # Hint to detect selection processes.
25 HINT_PROCESS_SELECT = Select, Auswahl
26

27 # Hint to detect multi-instance mode on resource access.
28 HINT_RESOURCE_INFORMATION_MULTI = List, Catalog, Set, Liste, Katalog, Menge
29

30 # Hint to detect message resources.
31 HINT_RESOURCE_INFORMATION_TEXT = Text, Message, E-Mail, Nachricht
32

33 # Hint to detect structured data resources.
34 HINT_RESOURCE_INFORMATION_XML = XML
35

36 # Hint to detect document resources.
37 HINT_RESOURCE_DOCUMENT = Document, Dokument
38

39 # Hint to detect software resources.
40 HINT_RESOURCE_SOFTWARE = Software, Service, Web-Service, Application, Applikation

282



41

42 # Hint to detect software service resources.
43 HINT_RESOURCE_SOFTWARE_SERVICE = Service
44

45 # Hint to detect custom software resources.
46 HINT_RESOURCE_SOFTWARE_CUSTOM = Custom
47

48 # Hint to detect ok options.
49 HINT_OK = Ok, Accept, Valid, Yes

. . .

de.gulden.modeling.seem.workflow/templates/conventions.properties: Conventions
configuration for model transformations and code generation.

MEMO process model perspective As one part of the MEMO input models to the
method, the business process model perspective is stored in the webshop.process file.
This file holds an XML Metadata Interchange (XMI) model conforming to the MEMO
language specification. It contains references to elements in other MEMO perspective
models.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Process:ProcessModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:Process="orgml.memo.org/process" xmlns:model="orgml.memo.org/model"
xmlns:notation="http://www.eclipse.org/gmf/runtime/1.0.2/notation"
xmlns:organisation="orgml.memo.org/organisation" xmlns:resmlAllocation="resml.
memo.org/allocation" xmi:id="_uDRN4TcDEeCX95JTy-Rt3A" name="Webshop Process
Model">

3 <processes xmi:type="Process:ProcessBody" xmi:id="_5TEuMDcDEeCX95JTy-Rt3A" name="
Select products&#xA;from catalog" orgUnit="Customer" baseQualifier="Partly
Automated">

4 <viewReferences xmi:type="model:ViewReference" xmi:id="_5V9DEDcDEeCX95JTy-Rt3A"
key="Process Control Flow">

5 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#
_uGp5EDcDEeCX95JTy-Rt3A"/>

6 </viewReferences>
7 <responsibleUnit xmi:type="organisation:Role" href="webshop.organisation#

_AQZcEDp6EeCZc8qoBsE3Uw"/>
8 <resourceAllocations xmi:type="resmlAllocation:ResourceAllocation" href="webshop.

resml#_FgqxEDj0EeCP_MqEXhOUJw"/>
9 <resourceAllocations xmi:type="resmlAllocation:ResourceAllocation" href="webshop.

resml#_3abZsDj0EeCP_MqEXhOUJw"/>
10 </processes>
11 <processes xmi:type="Process:ProcessBody" xmi:id="_Lvls0DcEEeCX95JTy-Rt3A" name="

Fill-in order form&#xA;or cancel" orgUnit="Customer" baseQualifier="Partly
Automated">

12 <viewReferences xmi:type="model:ViewReference" xmi:id="_LwcocDcEEeCX95JTy-Rt3A"
key="Process Control Flow">

13 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#
_uGp5EDcDEeCX95JTy-Rt3A"/>

14 </viewReferences>
15 <responsibleUnit xmi:type="organisation:Role" href="webshop.organisation#

_AQZcEDp6EeCZc8qoBsE3Uw"/>
16 <alternativeSplit xmi:type="Process:AlternativeSplit" xmi:id="_qztsMDcEEeCX95JTy-

Rt3A" processName="Fill-in order form&#xA;or cancel"/>
17 <resourceAllocations xmi:type="resmlAllocation:ResourceAllocation" href="webshop.

resml#_IaEAEDj0EeCP_MqEXhOUJw"/>
18 <resourceAllocations xmi:type="resmlAllocation:ResourceAllocation" href="webshop.

resml#_4yFJIDj0EeCP_MqEXhOUJw"/>
19 </processes>

283



20 <processes xmi:type="Process:ProcessBody" xmi:id="_IUxdMDhAEeCRoIVBgr3r6Q" name="
Read confirmation" orgUnit="Customer" baseQualifier="Partly Automated">

21 <viewReferences xmi:type="model:ViewReference" xmi:id="_IVDKADhAEeCRoIVBgr3r6Q"
key="Process Control Flow">

22 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#
_uGp5EDcDEeCX95JTy-Rt3A"/>

23 </viewReferences>
24 <responsibleUnit xmi:type="organisation:Role" href="webshop.organisation#

_AQZcEDp6EeCZc8qoBsE3Uw"/>
25 <resourceAllocations xmi:type="resmlAllocation:ResourceAllocation" href="webshop.

resml#_UuZLoDhIEeCRoIVBgr3r6Q"/>
26 <resourceAllocations xmi:type="resmlAllocation:ResourceAllocation" href="webshop.

resml#_fsD6wDlTEeCGA8CAiWoPnA"/>
27 </processes>
28 <processes xmi:type="Process:ProcessBody" xmi:id="_UxXZYDhDEeCRoIVBgr3r6Q" name="

Validate order" orgUnit="ShippingEmployee" baseQualifier="Partly Automated">
29 <viewReferences xmi:type="model:ViewReference" xmi:id="_Uxn4EDhDEeCRoIVBgr3r6Q"

key="Process Control Flow">
30 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#

_uGp5EDcDEeCX95JTy-Rt3A"/>
31 </viewReferences>
32 <responsibleUnit xmi:type="organisation:Position" href="webshop.organisation#

_I707IDp6EeCZc8qoBsE3Uw"/>
33 <alternativeSplit xmi:type="Process:AlternativeSplit" xmi:id="

_Op7wwDj2EeCP_MqEXhOUJw" processName="Validate order"/>
34 <resourceAllocations xmi:type="resmlAllocation:ResourceAllocation" href="webshop.

resml#_5tdhYDj2EeCP_MqEXhOUJw"/>
35 <resourceAllocations xmi:type="resmlAllocation:ResourceAllocation" href="webshop.

resml#_e17W4Dj5EeCP_MqEXhOUJw"/>
36 </processes>
37 <processes xmi:type="Process:ProcessBody" xmi:id="_osWhIDhDEeCRoIVBgr3r6Q" name="

Pick goods from storage" orgUnit="ShippingEmployee" baseQualifier="Manual">
38 <viewReferences xmi:type="model:ViewReference" xmi:id="_os0bMDhDEeCRoIVBgr3r6Q"

key="Process Control Flow">
39 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#

_uGp5EDcDEeCX95JTy-Rt3A"/>
40 </viewReferences>
41 <responsibleUnit xmi:type="organisation:Position" href="webshop.organisation#

_I707IDp6EeCZc8qoBsE3Uw"/>
42 </processes>
43 <processes xmi:type="Process:ProcessBody" xmi:id="_iWf84DhEEeCRoIVBgr3r6Q" name="

Package goods and send" orgUnit="ShippingEmployee" baseQualifier="Manual">
44 <viewReferences xmi:type="model:ViewReference" xmi:id="_iW1UEDhEEeCRoIVBgr3r6Q"

key="Process Control Flow">
45 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#

_uGp5EDcDEeCX95JTy-Rt3A"/>
46 </viewReferences>
47 <responsibleUnit xmi:type="organisation:Position" href="webshop.organisation#

_I707IDp6EeCZc8qoBsE3Uw"/>
48 </processes>
49 <processes xmi:type="Process:ProcessBody" xmi:id="_WSmyUDj2EeCP_MqEXhOUJw" name="

Send cancellation e-mail" orgUnit="" description="From: #CONFIG_EMAIL_SENDER
#&#xA;To: #customer-email#" baseQualifier="Automated">

50 <viewReferences xmi:type="model:ViewReference" xmi:id="_WTCQIDj2EeCP_MqEXhOUJw"
key="Process Control Flow">

. . .

de.gulden.modeling.seem.example.webshop/model/webshop.process: The MEMO
process model perspective model.

MEMO organization perspective The MEMO organization perspective among the in-
put enterprise models is provided by the file webshop.organisation. The model
elements are cross-referenced from the webshop.process model.

284



1 <?xml version="1.0" encoding="UTF-8"?>
2 <organisation:OrganisationModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:organisation="orgml.memo.org/organisation" xmi:id="_-I3u4Dp5EeCZc8qoBsE3Uw
">

3 <unitsOfWork xmi:type="organisation:Role" xmi:id="_AQZcEDp6EeCZc8qoBsE3Uw" name="
Customer"/>

4 <unitsOfWork xmi:type="organisation:AggregatedUnit" xmi:id="_BNDRkDp6EeCZc8qoBsE3Uw
" name="Management"/>

5 <unitsOfWork xmi:type="organisation:Group" xmi:id="_C3jrkDp6EeCZc8qoBsE3Uw" name="
ProductionDepartment"/>

6 <unitsOfWork xmi:type="organisation:Group" xmi:id="_EFYJkDp6EeCZc8qoBsE3Uw" name="
MarketingDepartment"/>

7 <unitsOfWork xmi:type="organisation:Group" xmi:id="_FLHpoDp6EeCZc8qoBsE3Uw" name="
ShippingDepartment"/>

8 <unitsOfWork xmi:type="organisation:Position" xmi:id="_GbnBIDp6EeCZc8qoBsE3Uw" name
="ProductionEmployee"/>

9 <unitsOfWork xmi:type="organisation:Position" xmi:id="_HjGNoDp6EeCZc8qoBsE3Uw" name
="MarketingEmployee"/>

10 <unitsOfWork xmi:type="organisation:Position" xmi:id="_I707IDp6EeCZc8qoBsE3Uw" name
="ShippingEmployee"/>

11 <links xmi:type="organisation:SuperiorLink" xmi:id="_Ni0UYDp6EeCZc8qoBsE3Uw" target
="_C3jrkDp6EeCZc8qoBsE3Uw" source="_GbnBIDp6EeCZc8qoBsE3Uw"/>

12 <links xmi:type="organisation:SuperiorLink" xmi:id="_OAzQ4Dp6EeCZc8qoBsE3Uw" target
="_EFYJkDp6EeCZc8qoBsE3Uw" source="_HjGNoDp6EeCZc8qoBsE3Uw"/>

13 <links xmi:type="organisation:SuperiorLink" xmi:id="_OYYDYDp6EeCZc8qoBsE3Uw" target
="_FLHpoDp6EeCZc8qoBsE3Uw" source="_I707IDp6EeCZc8qoBsE3Uw"/>

14 <links xmi:type="organisation:SuperiorLink" xmi:id="_Oxnp0Dp6EeCZc8qoBsE3Uw" target
="_BNDRkDp6EeCZc8qoBsE3Uw" source="_C3jrkDp6EeCZc8qoBsE3Uw"/>

15 <links xmi:type="organisation:SuperiorLink" xmi:id="_PQEgYDp6EeCZc8qoBsE3Uw" target
="_BNDRkDp6EeCZc8qoBsE3Uw" source="_EFYJkDp6EeCZc8qoBsE3Uw"/>

16 <links xmi:type="organisation:SuperiorLink" xmi:id="_Pn4jcDp6EeCZc8qoBsE3Uw" target
="_BNDRkDp6EeCZc8qoBsE3Uw" source="_FLHpoDp6EeCZc8qoBsE3Uw"/>

17 </organisation:OrganisationModel>

de.gulden.modeling.seem.example.webshop/model/webshop.organisation: The MEMO
organization perspective model.

MEMO resource perspective The MEMO resource perspective is the third and last
conceptual source input model used in the example application of the method. Similar
to the webshop.organisation model, the elements in this model are also cross-
referenced by the process model.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <resml:ResourceModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:Process="orgml.memo.org/process" xmlns:model="orgml.memo.org/model"
xmlns:notation="http://www.eclipse.org/gmf/runtime/1.0.2/notation" xmlns:resml="
resml.memo.org" xmlns:resmlAllocation="resml.memo.org/allocation" xmi:id="
_BhFpQDhIEeCRoIVBgr3r6Q">

3 <resources xmi:type="resml:FrontEndComputingDevice" xmi:id="_FEmzUDhIEeCRoIVBgr3r6Q
" name="Web Browser" allocatedVia="_UuZLoDhIEeCRoIVBgr3r6Q
_3abZsDj0EeCP_MqEXhOUJw _4yFJIDj0EeCP_MqEXhOUJw">

4 <viewReferences xmi:type="model:ViewReference" xmi:id="_FF2JcDhIEeCRoIVBgr3r6Q"
key="Resml">

5 <view xmi:type="notation:Diagram" href="resources.res_diagram#
_BhaZYDhIEeCRoIVBgr3r6Q"/>

6 </viewReferences>
7 <viewReferences xmi:type="model:ViewReference" xmi:id="_jIJfcDhIEeCRoIVBgr3r6Q"

key="Process Control Flow">
8 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#

_uGp5EDcDEeCX95JTy-Rt3A"/>

285



9 </viewReferences>
10 </resources>
11 <resources xmi:type="resml:Information" xmi:id="_nCPfwTjzEeCP_MqEXhOUJw" name="

Product List" allocatedVia="_FgqxEDj0EeCP_MqEXhOUJw">
12 <viewReferences xmi:type="model:ViewReference" xmi:id="_nGBMgDjzEeCP_MqEXhOUJw"

key="Resml">
13 <view xmi:type="notation:Diagram" href="resources.res_diagram#

_BhaZYDhIEeCRoIVBgr3r6Q"/>
14 </viewReferences>
15 <viewReferences xmi:type="model:ViewReference" xmi:id="_1AotQDjzEeCP_MqEXhOUJw"

key="Process Control Flow">
16 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#

_uGp5EDcDEeCX95JTy-Rt3A"/>
17 </viewReferences>
18 </resources>
19 <resources xmi:type="resml:Information" xmi:id="_puZkADjzEeCP_MqEXhOUJw" name="

Order" allocatedVia="_IaEAEDj0EeCP_MqEXhOUJw _5tdhYDj2EeCP_MqEXhOUJw
_fsD6wDlTEeCGA8CAiWoPnA">

20 <viewReferences xmi:type="model:ViewReference" xmi:id="_pum_YDjzEeCP_MqEXhOUJw"
key="Resml">

21 <view xmi:type="notation:Diagram" href="resources.res_diagram#
_BhaZYDhIEeCRoIVBgr3r6Q"/>

22 </viewReferences>
23 <viewReferences xmi:type="model:ViewReference" xmi:id="_qw-l4Dj0EeCP_MqEXhOUJw"

key="Process Control Flow">
24 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#

_uGp5EDcDEeCX95JTy-Rt3A"/>
25 </viewReferences>
26 </resources>
27 <resources xmi:type="resml:InformationSystem" xmi:id="_SdIOMDj5EeCP_MqEXhOUJw" name

="Storage Management IS" allocatedVia="_e17W4Dj5EeCP_MqEXhOUJw">
28 <viewReferences xmi:type="model:ViewReference" xmi:id="_Sd8tkDj5EeCP_MqEXhOUJw"

key="Resml">
29 <view xmi:type="notation:Diagram" href="resources.res_diagram#

_BhaZYDhIEeCRoIVBgr3r6Q"/>
30 </viewReferences>
31 <viewReferences xmi:type="model:ViewReference" xmi:id="_ptyYADlLEeCGA8CAiWoPnA"

key="Process Control Flow">
32 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#

_uGp5EDcDEeCX95JTy-Rt3A"/>
33 </viewReferences>
34 </resources>
35 <resources xmi:type="resml:Information" xmi:id="_MG3UgEJhEeC7OsczeBqlOw" name="

Confirmation Text" description="Subject: Order #order# confirmed&#xA;&#xA;Dear
#customer_name#,&#xA;&#xA;your order #order# is confirmed. Please pay the
amount of #price# to our bank account 1234567, bank no. 7654321.&#xA;&#xA;
Sincerely, &#xA;The Webshop&#xA;" allocatedVia="_A5MFsEJiEeC7OsczeBqlOw">

36 <viewReferences xmi:type="model:ViewReference" xmi:id="_MId3AEJhEeC7OsczeBqlOw"
key="Resml">

37 <view xmi:type="notation:Diagram" href="resources.res_diagram#
_BhaZYDhIEeCRoIVBgr3r6Q"/>

38 </viewReferences>
39 <viewReferences xmi:type="model:ViewReference" xmi:id="_25zrcEJhEeC7OsczeBqlOw"

key="Process Control Flow">
40 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#

_uGp5EDcDEeCX95JTy-Rt3A"/>
41 </viewReferences>
42 </resources>
43 <resources xmi:type="resml:Information" xmi:id="_Nm_qgEJhEeC7OsczeBqlOw" name="

Cancelation Text" description="Subject: Order #order# canceled&#xA;&#xA;Dear #
customer_name#,&#xA;&#xA;your order #order# has been canceled.&#xA;&#xA;
Sincerely, &#xA;The Webshop&#xA;" allocatedVia="_EWM_IEJiEeC7OsczeBqlOw">

44 <viewReferences xmi:type="model:ViewReference" xmi:id="_NnQwQEJhEeC7OsczeBqlOw"
key="Resml">

45 <view xmi:type="notation:Diagram" href="resources.res_diagram#
_BhaZYDhIEeCRoIVBgr3r6Q"/>

46 </viewReferences>

286



47 <viewReferences xmi:type="model:ViewReference" xmi:id="_251goEJhEeC7OsczeBqlOw"
key="Process Control Flow">

48 <view xmi:type="notation:Diagram" href="webshop.cflow_diagram#
_uGp5EDcDEeCX95JTy-Rt3A"/>

49 </viewReferences>
50 </resources>

. . .

de.gulden.modeling.seem.example.webshop/model/webshop.resml: The MEMO
resource perspective model.

EEM representation of the MEMO input models After executing the adapter trans-
formation, the EEM model is available, generated from the 3 MEMO input models above.
It represents the same conceptual elements as the input models, in a streamlined repre-
sentation, which can uniformly be processed in subsequent steps of the method. The
meta-model of this model instance is shown in Fig. 16.

1 <?xml version="1.0" encoding="ASCII"?>
2 <eem:EemModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance" xmlns:eem="http://gulden.de/modeling/emdsd/
eem/1.0" name="Webshop Process Model">

3 <eMObjects xsi:type="eem:Process" comment="Top Level Process" name="Webshop
Business Process" topLevel="true"/>

4 <eMObjects xsi:type="eem:ActorGroup" name="Customer" performs="//@eMObjects.9 //
@eMObjects.10 //@eMObjects.11"/>

5 <eMObjects xsi:type="eem:ActorGroup" name="Management" subordinate="//@eMObjects.3
//@eMObjects.4 //@eMObjects.5"/>

6 <eMObjects xsi:type="eem:ActorGroup" name="ProductionDepartment" superordinate="//
@eMObjects.2" subordinate="//@eMObjects.6"/>

7 <eMObjects xsi:type="eem:ActorGroup" name="MarketingDepartment" superordinate="//
@eMObjects.2" subordinate="//@eMObjects.7"/>

8 <eMObjects xsi:type="eem:ActorGroup" name="ShippingDepartment" superordinate="//
@eMObjects.2" subordinate="//@eMObjects.8"/>

9 <eMObjects xsi:type="eem:ActorGroup" name="ProductionEmployee" superordinate="//
@eMObjects.3"/>

10 <eMObjects xsi:type="eem:ActorGroup" name="MarketingEmployee" superordinate="//
@eMObjects.4"/>

11 <eMObjects xsi:type="eem:ActorGroup" name="ShippingEmployee" performs="//@eMObjects
.12 //@eMObjects.13 //@eMObjects.14" superordinate="//@eMObjects.5"/>

12 <eMObjects xsi:type="eem:Process" name="Select products from catalog" outgoing="//
@eMObjects.34" ingoing="//@eMObjects.32" kind="SEMIAUTOMATIC" performedBy="//
@eMObjects.1" ProcessResourceAccess="//@eMObjects.55 //@eMObjects.57"/>

13 <eMObjects xsi:type="eem:Process" name="Fill-in order form or cancel" outgoing="//
@eMObjects.40 //@eMObjects.43" ingoing="//@eMObjects.28" kind="SEMIAUTOMATIC"
performedBy="//@eMObjects.1" ProcessResourceAccess="//@eMObjects.56 //
@eMObjects.58"/>

14 <eMObjects xsi:type="eem:Process" name="Read confirmation" outgoing="//@eMObjects
.37" ingoing="//@eMObjects.45" kind="SEMIAUTOMATIC" performedBy="//@eMObjects
.1" ProcessResourceAccess="//@eMObjects.54 //@eMObjects.61"/>

15 <eMObjects xsi:type="eem:Process" name="Validate order" outgoing="//@eMObjects.41
//@eMObjects.42" ingoing="//@eMObjects.44" kind="SEMIAUTOMATIC" performedBy
="//@eMObjects.8" ProcessResourceAccess="//@eMObjects.59 //@eMObjects.60"/>

16 <eMObjects xsi:type="eem:Process" name="Pick goods from storage" outgoing="//
@eMObjects.30" ingoing="//@eMObjects.29" kind="MANUAL" performedBy="//
@eMObjects.8"/>

17 <eMObjects xsi:type="eem:Process" name="Package goods and send" outgoing="//
@eMObjects.36" ingoing="//@eMObjects.33" kind="MANUAL" performedBy="//
@eMObjects.8"/>

18 <eMObjects xsi:type="eem:Process" value="From: #CONFIG_EMAIL_SENDER#&#xA;To: #
customer-email#" name="Send cancellation e-mail" outgoing="//@eMObjects.35"

287



ingoing="//@eMObjects.31" kind="AUTOMATIC" ProcessResourceAccess="//@eMObjects
.63"/>

19 <eMObjects xsi:type="eem:Process" value="From: #CONFIG_EMAIL_SENDER#&#xA;To: #
customer-email#" name="Send confirmation e-mail" outgoing="//@eMObjects.39"
ingoing="//@eMObjects.38" kind="AUTOMATIC" ProcessResourceAccess="//@eMObjects
.62"/>

20 <eMObjects xsi:type="eem:Event" name="Webshop entered" outgoing="//@eMObjects.32"
kind="START"/>

21 <eMObjects xsi:type="eem:Event" name="Order canceled" ingoing="//@eMObjects.35 //
@eMObjects.43" kind="STOP"/>

22 <eMObjects xsi:type="eem:Event" name="Products are selected" outgoing="//
@eMObjects.28" ingoing="//@eMObjects.34"/>

23 <eMObjects xsi:type="eem:Event" name="Order is submitted" outgoingParallel="true"
outgoing="//@eMObjects.44 //@eMObjects.45" ingoing="//@eMObjects.40"/>

24 <eMObjects xsi:type="eem:Event" name="Order is valid" outgoing="//@eMObjects.29"
ingoing="//@eMObjects.41"/>

25 <eMObjects xsi:type="eem:Event" name="Goods are picked" outgoing="//@eMObjects.33"
ingoing="//@eMObjects.30"/>

26 <eMObjects xsi:type="eem:Event" name="Order complete" ingoing="//@eMObjects.39"
kind="STOP"/>

27 <eMObjects xsi:type="eem:Event" name="Order is invalid" outgoing="//@eMObjects.31"
ingoing="//@eMObjects.42"/>

28 <eMObjects xsi:type="eem:Event" name="Confirmation is read" outgoing="//@eMObjects
.46" ingoing="//@eMObjects.37"/>

29 <eMObjects xsi:type="eem:Event" name="Goods are packaged and sent" outgoing="//
@eMObjects.47" ingoing="//@eMObjects.36"/>

30 <eMObjects xsi:type="eem:Event" name="Synchronizer1" ingoingParallel="true"
outgoing="//@eMObjects.38" ingoing="//@eMObjects.46 //@eMObjects.47"/>

31 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.19" to="//@eMObjects.10"/>

32 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.21" to="//@eMObjects.13"/>

33 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.13" to="//@eMObjects.22"/>

34 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.24" to="//@eMObjects.15"/>

35 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.17" to="//@eMObjects.9"/>

36 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.22" to="//@eMObjects.14"/>

37 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects.9"
to="//@eMObjects.19"/>

38 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.15" to="//@eMObjects.18"/>

39 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.14" to="//@eMObjects.26"/>

40 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.11" to="//@eMObjects.25"/>

41 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.27" to="//@eMObjects.16"/>

42 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.16" to="//@eMObjects.23"/>

43 <eMObjects xsi:type="eem:Sequence" name="Submit Order" inProcess="//@eMObjects.0"
from="//@eMObjects.10" to="//@eMObjects.20"/>

44 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.12" to="//@eMObjects.21"/>

45 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.12" to="//@eMObjects.24"/>

46 <eMObjects xsi:type="eem:Sequence" name="Cancel Order" inProcess="//@eMObjects.0"
from="//@eMObjects.10" to="//@eMObjects.18"/>

47 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.20" to="//@eMObjects.12"/>

48 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.20" to="//@eMObjects.11"/>

49 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.25" to="//@eMObjects.27"/>

288



50 <eMObjects xsi:type="eem:Sequence" inProcess="//@eMObjects.0" from="//@eMObjects
.26" to="//@eMObjects.27"/>

. . .

de.gulden.modeling.seem.example.webshop/model/webshop.eem: A streamlined EEM
representation of the MEMO input models for further processing.

Mapping model used in the example The file webshop.mapping contains the map-
ping model used in the example project. It has automatically been generated using the
mapping model initialization transformation (see Sect. 6.3.2) of the example project. The
mapping model is an instance of the meta-model shown in Fig. 22 and Fig. 43 to Fig. 58.

1 <?xml version="1.0" encoding="ASCII"?>
2 <mapping:MappingModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi

="http://www.w3.org/2001/XMLSchema-instance" xmlns:eem="http://gulden.de/
modeling/emdsd/eem/1.0" xmlns:mapping="http://gulden.de/modeling/emdsd/mapping
/1.0" xmlns:web="http://gulden.de/modeling/emdsd/architecture/web/1.0" name="
webshop-process-model" basePackage="webshopprocessmodel" modelURI="http://
webshopprocessmodel/1.0">

3 <processMappings name="Webshop Business Process">
4 <process href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.

webshop/model/webshop.eem#//@eMObjects.0"/>
5 <sequenceMappings name="Webshop entered &#x2192; Select products from catalog"

controlFlowImplementation="//@genericArchitecture/@implementations.47">
6 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.

webshop/model/webshop.eem#//@eMObjects.32"/>
7 <actorResolverImplementations xsi:type="web:WebSessionUser" href="webshop.web

#//@implementations.0"/>
8 </sequenceMappings>
9 <sequenceMappings name="Select products from catalog &#x2192; Products are

selected" controlFlowImplementation="//@genericArchitecture/@implementations
.47" actorResolverImplementations="//@genericArchitecture/@implementations
.46">

10 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.34"/>

11 </sequenceMappings>
12 <sequenceMappings name="Products are selected &#x2192; Fill-in order form or

cancel" controlFlowImplementation="//@genericArchitecture/@implementations
.47">

13 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.28"/>

14 <actorResolverImplementations xsi:type="web:WebSessionUser" href="webshop.web
#//@implementations.0"/>

15 </sequenceMappings>
16 <sequenceMappings name="Fill-in order form or cancel &#x2192; Order is submitted"

controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.46">

17 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.40"/>

18 </sequenceMappings>
19 <sequenceMappings name="Fill-in order form or cancel &#x2192; Order canceled"

conditionImplementation="//@genericArchitecture/@implementations.50"
controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.46">

20 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.43"/>

21 </sequenceMappings>
22 <sequenceMappings name="Order is submitted &#x2192; Validate order"

controlFlowImplementation="//@genericArchitecture/@implementations.48"
actorResolverImplementations="//@genericArchitecture/@implementations.49">

289



23 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.44"/>

24 </sequenceMappings>
25 <sequenceMappings name="Order is submitted &#x2192; Read confirmation"

controlFlowImplementation="//@genericArchitecture/@implementations.47">
26 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.

webshop/model/webshop.eem#//@eMObjects.45"/>
27 <actorResolverImplementations xsi:type="web:WebSessionUser" href="webshop.web

#//@implementations.0"/>
28 </sequenceMappings>
29 <sequenceMappings name="Validate order &#x2192; Order is valid"

controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.46">

30 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.41"/>

31 </sequenceMappings>
32 <sequenceMappings name="Validate order &#x2192; Order is invalid"

controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.46">

33 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.42"/>

34 </sequenceMappings>
35 <sequenceMappings name="Order is valid &#x2192; Pick goods from storage"

controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.49">

36 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.29"/>

37 </sequenceMappings>
38 <sequenceMappings name="Pick goods from storage &#x2192; Goods are picked"

controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.46">

39 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.30"/>

40 </sequenceMappings>
41 <sequenceMappings name="Goods are picked &#x2192; Package goods and send"

controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.49">

42 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.33"/>

43 </sequenceMappings>
44 <sequenceMappings name="Package goods and send &#x2192; Goods are packaged and

sent" controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.46">

45 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.36"/>

46 </sequenceMappings>
47 <sequenceMappings name="Goods are packaged and sent &#x2192; Synchronizer1"

controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.46">

48 <sequence href="file:/home/user/runtime-mml/de.gulden.modeling.seem.example.
webshop/model/webshop.eem#//@eMObjects.47"/>

49 </sequenceMappings>
50 <sequenceMappings name="Synchronizer1 &#x2192; Send confirmation e-mail"

controlFlowImplementation="//@genericArchitecture/@implementations.47"
actorResolverImplementations="//@genericArchitecture/@implementations.46">

. . .

de.gulden.modeling.seem.example.webshop/model/webshop.mapping: The mapping
model used in the example project, generated by the mapping model initialization
transformation.

A.3.4 Generated example artifact

290



Generated main page of the web application This artifact is part of the example web-
shop implementation. It is the main entry point for a user from the internet to enter the web
application. The dynamic web page is generated by the code generation transformation of
the introductory example (see Appendix A.3.3), and can be deployed on a JSP capable
web server.

1 <?xml version="1.0" ?>
2 <!--
3 Generated file, generator written by Jens Gulden, jens.gulden@uni-due.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license.
5 -->
6

7 <%@page import="java.util.*" %>
8 <%@page import="java.util.Date" %>
9 <%@page import="java.io.*" %>

10 <%@page import="java.sql.*"%>
11 <%@page import="org.w3c.dom.*" %>
12 <%@page import="de.gulden.server.xmldb.*" %>
13 <%@page import="de.gulden.modeling.seem.api.web.*" %>
14 <%@page import="de.gulden.modeling.seem.api.web.jsp.BufferWriter" %>
15

16 <%@page contentType="application/xhtml+xml" %>
17 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">
18 <html xmlns="http://www.w3.org/1999/xhtml" xmlns:xf="http://www.w3.org/2002/xforms">
19

20 <%
21 Date startTime = new Date();
22

23 Context context = new Context(null, this.getServletContext(), request, response);
24

25 String processIdStr = request.getParameter("id");
26 int processId;
27 String step = request.getParameter("step");
28 String oldstep = request.getParameter("oldstep");
29 String prevOldstep = null;
30 String nextstep = request.getParameter("nextstep");
31

32 if ((processIdStr == null) || (processIdStr.trim().length() == 0)) {
33 processId = (int) ( System.currentTimeMillis() & 0x7fffffff ); // use int for db

storage
34 } else {
35 processId = Integer.parseInt(processIdStr);
36 }
37

38 JspWriter pageOut = out;
39 JspWriter headOut = new BufferWriter();
40 JspWriter bodyOut = new BufferWriter();
41

42 XMLDBConnection con = XMLDBManager.createConnection(context.getRequired("
CONFIG_XMLDB_URL"));

43 Class.forName(context.getRequired("CONFIG_DB_DRIVER")).newInstance();
44 Connection sql = DriverManager.getConnection(context.getRequired("CONFIG_DB_URL"),

context.getRequired("CONFIG_DB_USER"), context.get("CONFIG_DB_PASSWORD"));
45

46 ProcessFolder processFolder = new ProcessFolder(sql, processId);
47 context.setProcessFolder(processFolder);
48 UserManager userManager = new UserManager(con, sql, processId);
49 ToDoList todoList = new ToDoList(sql);

. . .

webshop/WebContent/index.jsp: Generated main page of the web application.

291



A.3.5 Modeling conventions to incorporate additional semantics into the enterprise
models

The example projects each use a set of modeling conventions, to specify additional hints
about intended semantics in the conceptual enterprise models. This allows to interpret the
conceptual models in a more fine-grained way than possible with the conceptual model-
ing language elements, and retrieve all required information for realizing a 100% code
generation approach.

Hints are typically given as parts of element names, or via a description text-field attached
to conceptual model elements. They can also refer to specific constellations or patterns of
model elements, which are interpreted in a previously acknowledged way.

The following table lists the conventions used in the introductory example. The rules are
stated in an easy to understand natural language, to allow any of the involved stakeholders
to understand the conventions.

Resource modeling conventions

• An information resource name ending with “List” indicates a multi-value ac-
cess to a resource type or instance.

• Resource allocations should be named “read”, “modify”, “create”, or “delete”,
to indicate how the resource is accessed. (Names of selected resource alloca-
tions are shown in the properties-tab below the diagram.)

• Information resources, which contain the words “Message” or “Text” in their
names, are considered to be notifications displayed to the user, or other human-
readable text documents.

• Software resources containing the word “Browser” in their name can be mod-
eled to be accessed by a process-step. This denotes that the process-step is to
be executed via a web-browser by an anonymous public web user (see below
the according convention on process modeling).

• Other software resources are assumed to be external applications, which are
locally invoked at the user’s device.

Process modeling conventions

• A semi-automatic process containing the word “select” in its name, will be im-
plemented by a form, in which the user can select from the resources accessed
by this process in “read” mode.

• A semi-automatic process, which accesses a software resource with the word
“Browser” in its name, will be implemented by a web-application publicly

292



accessible from the internet (see above the according convention on resource
modeling).

• A semi-automatic process accessing a text resource in read mode, will be im-
plemented by displaying the text to the user.

• A semi-automatic process accessing an information resource in create or mod-
ify mode, will be implemented by displaying an editable form to the user.

• The phrase “cancel” in the name of a sequence (a connection between two
processes) after an alternative split, will cause a cancel-option to be presented
in the user-interface of the process implementation.

• A branch of multiple alternative options in the process control flow after a semi-
automatic process (except “cancel” branches, which are treated as described
above), will present a menu to the user where the next process-step is selected.

• A branch of multiple alternative options in the process control flow after an
automatic process, will compare the process result value with the branch labels,
and pick the one with equal value as the outgoing sequence to be followed. If
no equal value can be found, the first branch is used by default.

• An automatic process containing the word “e-mail” in its name, will be imple-
mented by an automatic e-mail sending procedure, which picks values for mail
recipient, subject and text body from an accessed text resource. The description
text of the text resource model element should start with the line “Subject: . . . ”
to set a mail subject text, then a blank line must follow, then by any number
of following text lines will be used as the mail body. Text-fragments enclosed
in “#” characters will be replaced by the respective runtime values from the
process folder.

Actor modeling conventions

• An actor named “Anonymous”, “Public”, or “Customer”, will be treated as un-
authenticated anonymous user from the internet.

Technical artifacts, which contain concrete lists of sub-strings for use in the examples
applications, are shown in Appendix A.3.3 (for the introductory example), and in Ap-
pendix A.4.3 (for the comprehensive example).

293



A.4 Artifacts of the comprehensive example

The artifacts presented in the following, result from a publicly funded project about secu-
rity in the food industry domain (see Sect. 10.1). They show an example application of
the SEEM method for creating software for a distributed SOA environment, by generating
executable BPEL workflow process models.

A.4.1 Adaptation to a domain-specific supply chain modeling language

Model-to-model adapter transformation from supply chain modeler files to an EEM
model The scm-to-eem.xslt transformation converts a file in an XML data repre-
sentation that serializes a model instance from the supply chain modeler (see Sect. 10.2)
to an EMF-compatible representation in the EEM format.

Unlike the previous adapter transformation in Appendix A.3.1, this transformation is not a
horizontal transformation. It does not preserve the level of abstraction by performing only
a syntactic restructuring and renaming of concepts, but it converts from a higher level of
abstraction in the domain-specific supply chain model, to a lower, yet still conceptual and
non-technical, level of generic enterprise modeling concepts in the EEM representation.
I. e., concepts in the source model, which specifically refer to domain-specific properties
of a supply-chain, e. g., a fixed order of operations in a supply chain (such as placing an
order, dispatching an ordered good, then transporting it), or fixed actor roles (such as the
involved retailer, producer and logistician), need to be reflected by the general enterprise
model concepts of process-steps, actors, resources, etc. To achieve this shift in the level
of abstraction, the transformation performs some interpretation operations on the input
model, and represents the results in the EEM output instance.

The transformation script can be invoked by any Extensible Stylesheet Language Transfor-
mations (XSLT) interpreter integrated in a development environment, e. g., in the ECLIPSE
IDE, or by a batch XSLT interpreter. For the prototypical method application, a wrapper
for executing XSLT within MWE workflows has been written, which allows to invoke the
transformation from an individual MWE script, and as part of a combined overall MWE
workflow. See below for the MWE invocation script.

1 <!--
2 scm-to-eem.xslt, adapter transformation to convert a supply chain model to
3 an EEM representation.
4 Written by Jens Gulden, gulden@wiwi.uni-siegen.de.
5 Licensed under a Creative Commons Attribution 3.0 Unported license.
6 -->
7

8 <xsl:transform version="1.0"
9 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

10 xmlns:xmi="http://www.omg.org/XMI"
11 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
12 xmlns:eem="http://gulden.de/modeling/emdsd/eem/1.0" >
13

14 <!-- xmlns:fn="http://www.w3.org/2005/xpath-functions" -->
15

16 <xsl:strip-space elements="*" />
17 <xsl:output method="xml" indent="yes" />

294



18

19 <!--
20 The transformation is done in two steps:
21 1) main transformation to convert model structure
22 2) id transformation converting pseudo ids to expected xmi-locator expressions,
23 and creating back-references of bidirectional associations
24

25 This template collection performs the first step.
26 -->
27

28 <!-- - - - Main transformation - - - -->
29 <xsl:template match="/">
30 <eem:EemModel name="Supply Chain" xmi:version="2.0">
31 <eMObjects id="topLevelProcess" xsi:type="eem:Process" name="Supply Chain

Process" topLevel="true"/>
32 <xsl:apply-templates select="SupplyChain"/>
33 </eem:EemModel>
34 </xsl:template>
35

36 <!-- Transform all required elements. -->
37 <xsl:template match="SupplyChain">
38 <!-- actors -->
39 <xsl:apply-templates select="Participants/Participant"/>
40 <!-- resources -->
41 <xsl:apply-templates select="Assets/Asset"/>
42 <!-- entry point for process-steps -->
43 <xsl:apply-templates select="Processes/InternalProcess"/>
44 <!-- resource accesses -->
45 <xsl:apply-templates select="//CommunicationActivity/Interface/*"/>
46 <!-- Sequences -->
47 <xsl:apply-templates select="Connectors/Connector"/>
48 <!-- Locations -->
49 <xsl:apply-templates select="Locations/Location"/>
50 </xsl:template>

. . .

org.rescueit.modeling.workflow/xslt/scm-to-eem.xslt: Model-to-model
XSLT transformation of the comprehensive example to convert a supply chain modeler
file to an EEM representation.

Workflow script to invoke the supply chain model to EEM adapter transformation
This invocation script provides a way of invoking the adapting XSLT transformation,
which converts a supply chain model file to an EEM model instance (see above). The
script makes use of a custom-made extension to the MWE workflow mechanism, provid-
ing an executable component that runs an XSLT transformation.

The invocation script also runs a second phase transformation on the generated output of
this script, which adapts the unique element ids generated by scm-to-eem.xslt to a
format required by the EMF’s XMI format.

1 <!--
2 01-run-adaptEM.mwe, invocation script to run the adapter transformation.
3 Written by Jens Gulden, gulden@wiwi.uni-siegen.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license.
5 -->
6

7 <workflow>
8

295



9 <!-- Workflow script for running conceptual model adaptation. -->
10

11 <!-- Read configuration properties from file 'workflow.properties'. -->
12 <property file="./workflow.properties"/>
13 <property name="eemModel" value="${projectRoot}/model/${projectPrefix}.eem"/>
14 <property name="eemModel1" value="/tmp/${projectPrefix}1.eem"/>
15

16 <!-- Main conversion. -->
17 <xslt in="${projectRoot}/model/${projectPrefix}.xml"
18 style="xslt/scm-to-eem.xslt"
19 out="./tmp/${projectPrefix}.eem_tmp"
20 force="true"
21 class="de.gulden.modeling.seem.generator.util.XSLTTransformation" />
22

23 <!-- Id conversion. -->
24 <xslt in="./tmp/${projectPrefix}.eem_tmp"
25 out="${eemModel1}"
26 style="xslt/make-ids.xslt"
27 force="true"
28 class="de.gulden.modeling.seem.generator.util.XSLTTransformation" />
29

30 <!-- Delete temporary file. -->
31 <!--
32 <delete filename="./tmp/${projectPrefix}.eem_tmp" class="de.gulden.modeling.seem.

generator.util.DeleteFile"/>
33 -->
34

35 <!-- Read supply chain model in eem representation. -->
36 <component class="org.eclipse.emf.mwe.utils.Reader">
37 <uri value="${eemModel1}"/>
38 <modelSlot value="eemModel1"/>
39 </component>
40

41 <!-- Transform. -->
42 <component class="org.eclipse.xtend.XtendComponent">
43 <!--fileEncoding value="UTF-8"/-->
44 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="de.gulden.modeling.seem.eem.EemPackage"/></
metaModel>

45 <invoke value="eemDeferredSteps::transform(eemModel1)"/>
46 <outputSlot value="eemModel"/>
47 </component>
48

49 <!-- Write out the model. -->
50 <component class="org.eclipse.emf.mwe.utils.Writer">
51 <modelSlot value="eemModel"/>
52 <uri value="${eemModel}"/>
53 </component>
54

55 </workflow>

org.rescueit.modeling.workflow/01-run-adaptEM.mwe: Invocation script to run the scm-
to-eem.xslt transformation together with the id conversion make-ids.xslt.

A.4.2 Mapping model handling

Model-to-model transformation to set default mapping model entries for generat-
ing code for a SOA target architecture This target architecture specific initialization
transformation creates the default entries describing a SOA environment, for which a
BPEL process and accompanying files are generated as executable components. The

296



domain-specific language of the target architecture has been described in further detail
in Sect. 10.4.

1 /* initMappingBPEL.ext, model-to-model transformation to enrich a mapping model with
2 architecture-specific entries, and storing the referenced entries in an individual
3 architecture model.
4 Written by Jens Gulden, gulden@www.uni-siegen.de.
5 Licensed under a Creative Commons Attribution 3.0 Unported license. */
6

7 import soa;
8 import ecore;
9 import mapping;

10 import eem;
11 import reactionprocess;
12

13 extension common;
14 extension rescueit;
15 extension org::eclipse::xtend::util::stdlib::globalvar;
16 extension org::eclipse::xtend::util::stdlib::properties;
17

18 /*
19 * Interprets the conceptual model to find architecture specific for a BPEL/SOA
20 * applicaiton platform. Adds these entries to the mapping model.
21 */
22 SOAArchitectureModel updateMapping(MappingModel this):
23 this.targetArchitectures.typeSelect(SOAArchitectureModel).has() ? (
24 this.targetArchitectures.typeSelect(SOAArchitectureModel).update(this) ->
25 null // indicate that no new architecture model had to be created
26 ) : (
27 let newArchModel = new SOAArchitectureModel:
28 let genericArchModel = new GenericArchitectureModel:
29 newArchModel.implementations.add( createProcessService() ) ->
30 newArchModel.implementations.add( createMailService() ) ->
31 newArchModel.implementations.add( createConfigService() ) ->
32 newArchModel.implementations.add( createLogService() ) ->
33 newArchModel.implementations.add( createSecureLoggingService() ) ->
34 newArchModel.implementations.add( createUtilService() ) ->
35 newArchModel.implementations.add( createObservationService() ) -> // CEP
36 newArchModel.implementations.add( createSignatureService() ) ->
37 newArchModel.implementations.add( createSignatureValidateService() ) ->
38 newArchModel.implementations.add( createModelExtractionService() ) ->
39 newArchModel.implementations.add( createSecureTrackingService() ) ->
40 newArchModel.implementations.add( createBenchmarkService() ) ->
41 newArchModel.implementations.add( createContainerTrackingStatusService() ) ->
42 newArchModel.implementations.add( createContainerTrackingAlertService() ) ->
43 newArchModel.implementations.add( createIdemixProverService() ) ->
44 newArchModel.implementations.add( createIdemixVerifierService() ) ->
45 newArchModel.implementations.add( createReactionProcessService() ) ->
46 newArchModel.implementations.add( createCepService() ) -> // JMS message

queue
47 getProperty("reactionProcessModels").splitString().

createReactionProcessReference(newArchModel) ->
48 this.targetArchitectures.add( newArchModel.update(this) ) ->
49 this.setGenericArchitecture(genericArchModel) -> // unused, add for

completeness
50 newArchModel

. . .

org.rescueit.modeling.workflow/templates/initMappingSOA.ext: Script to create initial
default mapping entries for a SOA target application platform.

297



Workflow script to initialize the mapping model with a SOA implementation strategy
model In parallel to the previously introduced run-initMapping script, this script
combines the generic initialization of the mapping model with the example SOA imple-
mentation strategy model.

1 <!--
2 03-run-initMapping.mwe, invocation script to initialize the mapping model.
3 Written by Jens Gulden, gulden@wiwi.uni-siegen.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license.
5 -->
6

7 <workflow>
8

9 <!-- Workflow script for initializing a new mapping model from an enterprise
10 model representation of a supply chain model. -->
11

12 <!-- Read configuration properties from file 'workflow.properties'. -->
13 <property file="./workflow.properties"/>
14

15 <!-- Make property values available to Xtend's properties extension.
16 conventions.properties contains hints on how to interpret the enterprise
17 model semantics. -->
18 <component class="org.eclipse.xtend.util.stdlib.PropertiesReader">
19 <propertiesFile value="./workflow.properties"/>
20 <propertiesFile value="./conventions.properties"/>
21 </component>
22

23 <!-- Derive other properties from loaded properties. -->
24 <property name="eemModel" value="${projectRoot}/model/${projectPrefix}.eem"/>
25 <property name="outputMappingModel" value="${projectRoot}/model/${projectPrefix}.

mapping"/>
26 <property name="outputArchitectureSOAModel" value="${projectRoot}/model/${

projectPrefix}.soa"/>
27

28 <!-- Initialize issue reporter. -->
29 <component class="org.eclipse.xtend.util.stdlib.ExtIssueReporter"/>
30

31 <!-- Read supply chain model in eem representation. -->
32 <component class="org.eclipse.emf.mwe.utils.Reader">
33 <uri value="${eemModel}"/>
34 <modelSlot value="eemModel"/>
35 </component>
36

37 <!-- Create a new, blank mapping model. For every element in the eem model, that
38 can be referenced via a mapping entry, a blank mapping entry with a null-
39 reference to a yet unspecified implementation strategy is created. -->
40 <component class="org.eclipse.xtend.XtendComponent">
41 <!--fileEncoding value="UTF-8"/-->
42 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/></metaModel
>

43 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.eem.EemPackage"/></
metaModel>

44 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.mapping.MappingPackage"/
></metaModel>

45 <invoke value="initMapping::createMapping(eemModel)"/>
46 <outputSlot value="mappingModel"/>
47 </component>
48

49 <!-- Determine default implementation strategies for existing mapping entries. --
>

298



50 <component class="org.eclipse.xtend.XtendComponent">

. . .

org.rescueit.modeling.workflow/03-run-initMapping.mwe: Invocation script to run the
creation of initial default mapping entries for the SOA target architecture.

Workflow script to invoke the validity checks for a mapping model and an associated
SOA implementation strategy model This workflow modeling script is used to invoke
the mapping model and the SOA implementation strategy model validity checks.

1 <!--
2 04-run-checkMapping.mwe, invocation script to run the completeness check for a
3 mapping model.
4 Written by Jens Gulden, gulden@wiwi.uni-siegen.de.
5 Licensed under a Creative Commons Attribution 3.0 Unported license.
6 -->
7

8 <workflow>
9

10 <!-- Workflow script for running a completeness check on the mapping model. -->
11

12 <!-- Read configuration properties from file 'workflow.properties'. -->
13 <property file="./workflow.properties"/>
14

15 <!-- Derive other properties from loaded properties. -->
16 <property name="model" value="${projectRoot}/model/${projectPrefix}.mapping"/>
17 <property name="soaModel" value="${projectRoot}/model/${projectPrefix}.soa"/>
18

19 <!-- - - - Check mapping model. - - - -->
20

21 <!-- Read supply chain model in eem representation. -->
22 <component class="org.eclipse.emf.mwe.utils.Reader">
23 <uri value="${model}"/>
24 <modelSlot value="model"/>
25 </component>
26

27 <!-- Apply checkMapping.chk and checkMappingConstraints.chk. -->
28 <component class="org.eclipse.xtend.check.CheckComponent">
29 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/></metaModel
>

30 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.mapping.MappingPackage"/
></metaModel>

31 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.eem.EemPackage"/></
metaModel>

32 <checkFile value="checkMappingConstraints" />
33 <checkFile value="checkMapping" />
34 <emfAllChildrenSlot value="model" />
35 <abortOnError value="true"/>
36 </component>
37

38 <!-- - - - Check soa model. - - - -->
39

40 <!-- Read soa model. -->
41 <component class="org.eclipse.emf.mwe.utils.Reader">
42 <uri value="${soaModel}"/>
43 <modelSlot value="model"/>
44 </component>
45

299



46 <!-- Apply checkMappingSOA.chk and checkMappingSOAConstraints.chk. -->
47 <component class="org.eclipse.xtend.check.CheckComponent">
48 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/></metaModel
>

49 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.mapping.MappingPackage"/
></metaModel>

50 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.eem.EemPackage"/></
metaModel>

. . .

org.rescueit.modeling.workflow/04-run-checkMapping.mwe: Invocation script to
perform validity checks on a mapping model and a SOA implementation strategy model.

A.4.3 Code generation

Model-to-text transformation template to create executable BPEL code for a SOA
target architecture This file defines the generation logic, which finally binds together
the conceptual enterprise model, the implementation strategy model (or multiple imple-
mentation strategy models), and the interceding mapping model, to output deployable
BPEL artifacts.

1 «IMPORT soa»
2 «IMPORT eem»
3 «IMPORT mapping»
4

5 «EXTENSION org::eclipse::xtend::util::stdlib::globalvar»
6 «EXTENSION org::eclipse::xtend::util::stdlib::properties»
7 «EXTENSION common»
8 «EXTENSION rescueit»
9

10 «REM»
11 ******************************************************************************
12 *
13 * Project ReSCUe-IT
14 *
15 * Model-to-model transformation to textually generate a BPEL workflow model
16 * from a supply chain model in enterprise model representation, the ReSCUE-IT
17 * target architecture model, and an intermediating mapping model. The
18 * enterprise model rerpesenting the supply chain is derived with annotations
19 * from the supply chain modeler instance, using a separate transformation
20 * which gets executed prior to executing this one.
21 *
22 * The BPEL workflow model uses a different meta-meta-model than the input
23 * models, this is why a model-to-text approach is used for implementing
24 * the transformation.
25 *
26 * Written by Jens Gulden, 2011-2013, Chair for IT Security Management,
27 * University of Siegen, gulden@wiwi.uni-siegen.de
28 *
29 ******************************************************************************
30 «ENDREM»
31

32 «REM»**
33 *
34 * generate(MappingModel this)
35 *

300



36 * Entry template invoked from MWE script.
37 *
38 **«ENDREM»
39 «DEFINE generate FOR MappingModel»
40 «EXPAND generateBPEL»
41 «EXPAND generateWSDL»
42 «EXPAND generateDeploy»
43 «ENDDEFINE»
44

45 «DEFINE generateBPEL FOR MappingModel»
46 «FILE outputName()+".bpel"»«EXPAND process»«ENDFILE»
47 «ENDDEFINE»
48

49 «DEFINE generateWSDL FOR MappingModel»
50 «FILE outputName()+"Artifacts.wsdl"»«EXPAND wsdl»«ENDFILE»

. . .

org.rescueit.modeling.workflow/templates/soa/main.xpt: Main code generation script for
BPEL code generation.

Invocation script to run BPEL code generation With the 05-run-
generator.mwe modeling workflow script, the main.xpt template is invoked
from the tooling environment to generate BPEL code.

run-generator.mwe loads the mapping model with all references into memory, and
invokes the code generation engine with the generator entry template in main.xpt.

1 <!--
2 05-run-generator.mwe, invocation script to run the code generation transformation.
3 Written by Jens Gulden, gulden@wiwi.uni-siegen.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license.
5 -->
6

7 <workflow>
8

9 <!-- Workflow script for running BPEL code-generation. -->
10

11 <!-- Output base name. -->
12 <property name="outputName" value="RescueitSupplyChainProcess"/>
13

14 <!-- Read configuration properties from file 'workflow.properties'. -->
15 <property file="./workflow.properties"/>
16

17 <!-- Output directory. -->
18 <property name="outputPath" value="${projectRoot}/bpelContent"/>
19

20 <!-- Input file mapping model. -->
21 <property name="model" value="${projectRoot}/model/${projectPrefix}.mapping"/>
22

23 <!-- Initialize issue reporter. -->
24 <component class="org.eclipse.xtend.util.stdlib.ExtIssueReporter"/>
25

26 <!-- Make property values available to Xtend's properties extension.
27 conventions.properties contains hints on how to interpret the enterprise
28 model semantics. -->
29 <component class="org.eclipse.xtend.util.stdlib.PropertiesReader">
30 <propertiesFile value="./workflow.properties"/>
31 <propertiesFile value="./conventions.properties"/>
32 <propertiesFile value="/etc/rescueit.properties"/>
33 </component>

301



34

35 <!-- Read mapping model. -->
36 <component class="org.eclipse.emf.mwe.utils.Reader">
37 <uri value="${model}"/>
38 <modelSlot value="model"/>
39 </component>
40

41 <!-- Run code generation for BPEL, WSDL, and associated files. -->
42 <component class="org.eclipse.xpand2.Generator">
43 <fileEncoding value="ISO-8859-1"/>
44 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><

metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/></metaModel
>

45 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.mapping.MappingPackage"/
></metaModel>

46 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="de.gulden.modeling.seem.eem.EemPackage"/></
metaModel>

47 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel"><
metaModelPackage value="org.rescueit.modeling.targetarchitecture.soa.
SoaPackage"/></metaModel>

48 <outlet path="${outputPath}"/>
49 <globalVarDef name="outputName" value="'${outputName}'"/>
50 <expand value="soa::main::generate FOR model"/>

. . .

org.rescueit.modeling.workflow/05-run-generator.mwe: Invocation script to run
main.xpt for BPEL code generation.

Combined workflow script to invoke all individual transformation steps The 00-
run-all.mwe modeling workflow script invokes all previously described individual in-
vocation steps in one combined sequence. This is useful for projects which realize a zero-
coding approach, as it allows to run a fully automated artifact generation process without
developer interaction at generation time. (The leading “00-” part of the script name is used
to sort the file above other scripts in file-system views.)

1 <!--
2 00-run-all.mwe, invocation script to run all steps in sequence.
3 Written by Jens Gulden, gulden@wiwi.uni-siegen.de.
4 Licensed under a Creative Commons Attribution 3.0 Unported license.
5 -->
6

7 <workflow>
8

9 <!--
10 Workflow script for running all transformations, model checks, and code-
11 generation steps in sequence.
12 -->
13

14 <component file="01-run-adaptEM.mwe"/> <!-- inheritAll="true" -->
15 <component file="02-run-checkEM.mwe"/>
16 <component file="03-run-initMapping.mwe"/>
17 <component file="04-run-checkMapping.mwe"/>
18 <component file="05-run-generator.mwe"/>
19

20 </workflow>

302



org.rescueit.modeling.workflow/00-run-all.mwe: Combined workflow script to invoke all
individual transformation steps in one sequence.

Global configuration file for the code generation process In work-
flow.properties, global settings are specified to control the configuration of
the code generation process. Among others, these settings include the path to the project
root directory projectRoot, where the model files used throughout the method are
stored, and the prefix of filenames used for storing the models, projectPrefix.

1 # workflow.properties, global configuration for the code generation process.
2 # Written by Jens Gulden, gulden@wiwi.uni-siegen.de.
3 # Licensed under a Creative Commons Attribution 3.0 Unported license.
4

5 # -- projectRoot
6 # Specifies the source project root folder where source models and generated models
7 # are located.
8 projectRoot=/home/user/runtime-rescueit/org.rescueit.server.platform.process
9

10 # -- projectTarget
11 # Specifies the target project root folder where generated source code and other
12 # artifacts are written to.
13 projectTarget=/home/user/runtime-rescueit/org.rescueit.server.platform.process/tmp
14

15 # -- projectPrefix
16 # Specifies a short name for the project, that can be used as name prefix in several
17 # cases.
18 #projectPrefix=icecream
19 #projectPrefix=tiramisu
20

21 #projectPrefix=GermanScenarioIceCream
22 projectPrefix=GermanScenarioIceCream
23 #projectPrefix=FrenchScenarioChemical3
24

25 # -- databaseRoot
26 # Specifies the XML database root directory where generated XML data and schema files
27 # are written to.
28 databaseRoot=/home/user/runtime-rescueit/org.rescueit.server.platform.process/xml
29

30 # -- reactionProcessModels
31 # Reaction process models referenced for the supply chain implementation.
32 reactionProcessModels=\
33 /home/user/runtime-rescueit/org.rescueit.server.platform.reactionProcess/model/

foodIntoxication.reactionprocess,\
34 /home/user/runtime-rescueit/org.rescueit.server.platform.reactionProcess/model/

icecreamContamination.reactionprocess
35

36 # -- projectStepNavigatorRoot
37 # Specifies the root folder of the Step Navigator web application project.
38 projectStepNavigatorRoot=/home/user/runtime-rescueit/org.rescueit.server.application.

stepNavigator
39

40 # -- cepConfigurationPath
41 cepConfigurationPath=/home/user/runtime-rescueit/org.rescueit.server.cep.service/conf

/etc/rescueit/cep
42

43 # -- esbConfigurationPath
44 esbConfigurationPath=/home/user/runtime-rescueit/org.rescueit.server.platform.commons

/src/test/resources
45

303



46 # -- partnerConfigurationPath
47 partnerConfigurationPath=/home/user/runtime-rescueit/org.rescueit.server.partner.

services/WebContent

org.rescueit.modeling.workflow/workflow.properties: Global code generation
configuration.

Conventions configuration for model transformations and code generation To
store external configuration options for conventions about hints that are used in model
transformations and code generation steps throughout the method, the file conven-
tions.properties is used. It declares, e. g., string fragments of identifier names,
which are used to detect element types, or which are to match tagged values that are
queried during the transformations.

1 # conventions.properties, conventions configuration for model transformations
2 # and code generation.
3 # Written by Jens Gulden, gulden@wiwi.uni-siegen.de.
4 # Licensed under a Creative Commons Attribution 3.0 Unported license.
5

6 # Hint to detect retailer role for actors.
7 HINT_ACTOR_RETAILER = REWE, Casino
8

9 # Hint to detect producer role for actors.
10 HINT_ACTOR_PRODUCER = EisBaer, Distributor, Producer, Manufacturer
11

12 # Hint to detect distributor role for actors.
13 HINT_ACTOR_DISTRIBUTOR = Baam, BaaM, KuhneNagel, FreightForwarder, FreightForwarder1,

FreightForwarder2
14

15 # Hint to detect distributor role for actors.
16 HINT_ACTOR_LAB = Lab, Laboratory, Robert Koch Institut
17

18 # Hint to detect an order process step.
19 HINT_PROCESS_ORDER = Order
20

21 # Hint to detect a dispatch process step.
22 HINT_PROCESS_DISPATCH = Dispatch, Send Good
23

24 # Hint to detect a transport process step.
25 HINT_PROCESS_TRANSPORT = Transport, Delivery
26

27 # Hint to detect an order-receive process step.
28 HINT_PROCESS_RECEIVE = Receive
29

30 # Hint to detect a cancel option.
31 HINT_CANCEL = Cancel
32

33 # French constellation
34 # The technical capabilities of each partner's system are modeled as web-services.
35 # They get configured with parameters of the form <name>_<param>, <name> being an
36 # actor's name in the model.
37

38 # Partner service's XML namespace prefix.
39 Casino_prefix = retail
40 # Partner service's XML namespace uri.
41 #Casino_namespace = http://rescueit.org/partner/ReweRetailerService/
42 # Partner service's WSDL file.
43 #Casino_wsdlFile = ReweRetailerService.wsdl
44 # Partner service's port type name.
45 Casino_name = ReweRetailerService

304



46 # Partner service's default port name.
47 #Casino_port = ReweRetailerServiceSOAP
48 # Partner service's ESB endpoint address.
49 Casino_esbEndpointAddress = 127.0.0.10

. . .

org.rescueit.modeling.workflow/conventions.properties: Conventions configuration for
model transformations and code generation.

A.4.4 Input model and generated example artifacts

XML data of the serialized supply chain example model The XML data of the serial-
ized supply chain example model is stored according to a schema that reflects the concep-
tual elements of the domain-specific supply chain modeling language. The example file
has been contributed to the RESCUEIT project by the project partner SAP AG.

The scm-to-eem.xslt transformation (see Appendix A.4.1) converts this representa-
tion to a model in the EEM language, which is further processed in the subsequent method
steps. Fig. 59 shows an excerpt of the visual representation of the supply chain model.

1 <?xml version="1.0"?>
2 <SupplyChain>
3 <Assets>
4 <Asset id="Asset_0" name="PurchaseOrder" type="Logical" />
5 <Asset id="Asset_1" name="IceCream" type="Physical" />
6 <Asset id="Asset_2" name="IceCreamSample" type="Physical" />
7 <Asset id="Asset_3" name="LetterOfConfirmation" type="Logical" />
8 <Asset id="Asset_4" name="DeliveryContract" type="Logical" />
9 <Asset id="Asset_5" name="LabReport" type="Logical" />

10 <Asset id="Asset_6" name="WayBill" type="Logical" />
11 </Assets>
12 <Locations>
13 <Location Name="EisBaer" ID="location_1" Latitude="53,4340705871582" Longitude

="9,61501979827881">
14 <Country>Germany</Country>
15 <City>
16 </City>
17 <PostCode>
18 </PostCode>
19 <Street>
20 </Street>
21 <House>
22 </House>
23 </Location>
24 <Location Name="REWE" ID="location_2" Latitude="49,0107917785645" Longitude

="8,40865039825439">
25 <Country>Germany</Country>
26 <City>
27 </City>
28 <PostCode>
29 </PostCode>
30 <Street>
31 </Street>
32 <House>
33 </House>
34 </Location>
35 </Locations>
36 <Participants>

305



37 <Participant Name="REWE" EMail="" />
38 <Participant Name="EisBaer" EMail="" />
39 <Participant Name="BaaM" EMail="" />
40 <Participant Name="Lab" EMail="" />
41 </Participants>
42 <Processes>
43 <InternalProcess Name="Sequence" Owner="REWE">
44 <Sequence Name="Sequence">
45 <Sequence Name="Sequence">
46 <CommunicationActivity Name="Communication Activity">
47 <Interface>
48 <Output id="Argument_0" Asset="PurchaseOrder" />
49 </Interface>
50 <Controls>

. . .

org.rescueit.modeling.workflow/example/GermanScenarioIceCream.xml: XML data of
the serialized supply chain example model.

Generated executable BPEL workflow model The BPEL workflow model is generated
as an executable artifact by the example application of the method. When deployed with
a BPEL interpreter engine, the BPEL interpreter will read the XML-encoded workflow
process description, and will execute the described process.

1 <!--
2 ReSCUe-IT Secure Supply Chain BPEL Process
3 Generated from supply chain model.
4 Author: Jens Gulden
5 Date: Thu Dec 20 16:55:53 CET 2012
6 -->
7

8 <bpel:process name="RescueitSupplyChainProcess"
9 targetNamespace="http://rescueit.org/platform/RescueitSupplyChainProcess"

10 suppressJoinFailure="yes"
11 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
12 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
13 xmlns:tns="http://rescueit.org/platform/RescueitSupplyChainProcess"
14 xmlns:mail="http://mail.service.platform.server.rescueit.org"
15 xmlns:conf="http://config.service.platform.server.rescueit.org"
16 xmlns:log="http://log.service.platform.server.rescueit.org"
17 xmlns:util="http://util.service.platform.server.rescueit.org"
18 xmlns:obs="http://service.cep.server.rescueit.org"
19 xmlns:sign="http://signatureController.sichere-warenketten.de"
20 xmlns:verify="http://genericVerify.sichere-warenketten.de"
21 xmlns:mes="http://modelextractionagent.rwip.research.sap.com/"
22 xmlns:strack="http://securetrackeragent.rwip.research.sap.com/"
23 xmlns:bench="http://tempuri.org/"
24 xmlns:cts="http://statut.services.demsta.soget.com/"
25 xmlns:cta="http://alert.services.demsta.soget.com/"
26 xmlns:idemixProver="http://service.model.client.idews.itsec.unisiegen.de/"
27 xmlns:idemixVerify="http://verifier.services.verifier.idews.itsec.unisiegen.de/"
28 xmlns:rewe="http://rescueit.org/partner/ReweRetailerService"
29 xmlns:eisb="http://rescueit.org/partner/EisbaerProduceService"
30 xmlns:baam="http://rescueit.org/partner/BaamTransportService"
31 xmlns:lab="http://rescueit.org/partner/LabAnalysisService"
32 xmlns:orders="http://smooks.org/UNEDI/D09BUN/ORDERS"
33 xmlns:ordrsp="http://smooks.org/UNEDI/D09BUN/ORDRSP"
34 xmlns:iftmin="http://smooks.org/UNEDI/D09BUN/IFTMIN"
35 xmlns:medrpt="http://smooks.org/UNEDI/D09BUN/MEDRPT"
36 xmlns:desadv="http://smooks.org/UNEDI/D09BUN/DESADV"

306



37 >
38

39 <!-- import WSDLs -->
40

41 <bpel:import namespace="http://rescueit.org/platform/RescueitSupplyChainProcess"
42 location="RescueitSupplyChainProcessArtifacts.wsdl"
43 importType="http://schemas.xmlsoap.org/wsdl/" />
44 <bpel:import namespace="http://mail.service.platform.server.rescueit.org"
45 location="wsdl/MailService.wsdl"
46 importType="http://schemas.xmlsoap.org/wsdl/" />
47 <bpel:import namespace="http://config.service.platform.server.rescueit.org"
48 location="wsdl/ConfigService.wsdl"
49 importType="http://schemas.xmlsoap.org/wsdl/" />
50 <bpel:import namespace="http://log.service.platform.server.rescueit.org"

. . .

org.rescueit.modeling.workflow/example/SupplyChainProcess.bpel: Generated
executable BPEL workflow description as output of the applied model transformations.

Generated WSDL interface declaration for the BPEL workflow model The corre-
sponding interface declaration for the generated BPEL workflow model is given as a
WSDL file. Like the BPEL model, it is generated via the code generation mechanism
of the method based on information derived from the conceptual input models, and asso-
ciated implementation strategy models. The generated file references a manually edited
XML Schema Definition (XSD) part, included from a static file (see next paragraph).

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <!--
3 ReSCUe-IT Secure Supply Chain WSDL Interface
4 Generated from supply chain model.
5 Author: Jens Gulden
6 Date: Thu Dec 20 16:55:56 CET 2012
7 -->
8

9 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/" name="
RescueitSupplyChainProcess" targetNamespace="http://rescueit.org/platform/
RescueitSupplyChainProcess"

10 xmlns:varprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"
11 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
12 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
13 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
14 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
15 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
16 xmlns:tns="http://rescueit.org/platform/RescueitSupplyChainProcess"
17 xmlns:mail="http://mail.service.platform.server.rescueit.org"
18 xmlns:conf="http://config.service.platform.server.rescueit.org"
19 xmlns:log="http://log.service.platform.server.rescueit.org"
20 xmlns:util="http://util.service.platform.server.rescueit.org"
21 xmlns:obs="http://service.cep.server.rescueit.org"
22 xmlns:sign="http://signatureController.sichere-warenketten.de"
23 xmlns:verify="http://genericVerify.sichere-warenketten.de"
24 xmlns:mes="http://modelextractionagent.rwip.research.sap.com/"
25 xmlns:strack="http://securetrackeragent.rwip.research.sap.com/"
26 xmlns:bench="http://tempuri.org/"
27 xmlns:cts="http://statut.services.demsta.soget.com/"
28 xmlns:cta="http://alert.services.demsta.soget.com/"
29 xmlns:idemixProver="http://service.model.client.idews.itsec.unisiegen.de/"
30 xmlns:idemixVerify="http://verifier.services.verifier.idews.itsec.unisiegen.de/"

307



31 xmlns:rewe="http://rescueit.org/partner/ReweRetailerService"
32 xmlns:eisb="http://rescueit.org/partner/EisbaerProduceService"
33 xmlns:baam="http://rescueit.org/partner/BaamTransportService"
34 xmlns:lab="http://rescueit.org/partner/LabAnalysisService"
35 xmlns:orders="http://smooks.org/UNEDI/D09BUN/ORDERS"
36 xmlns:ordrsp="http://smooks.org/UNEDI/D09BUN/ORDRSP"
37 xmlns:iftmin="http://smooks.org/UNEDI/D09BUN/IFTMIN"
38 xmlns:medrpt="http://smooks.org/UNEDI/D09BUN/MEDRPT"
39 xmlns:desadv="http://smooks.org/UNEDI/D09BUN/DESADV"
40 >
41

42 <plnk:partnerLinkType name="RescueitSupplyChainProcess_PLT">
43 <plnk:role name="RescueitSupplyChainProcessRole" portType="

tns:RescueitSupplyChainProcess_PortType"/>
44 </plnk:partnerLinkType>
45 <plnk:partnerLinkType name="MailService_PLT">
46 <plnk:role name="MailServiceRole" portType="mail:MailServicePortType"/>
47 </plnk:partnerLinkType>
48 <plnk:partnerLinkType name="ConfigService_PLT">
49 <plnk:role name="ConfigServiceRole" portType="conf:ConfigServicePortType"/>
50 </plnk:partnerLinkType>

. . .

org.rescueit.modeling.workflow/example/SupplyChainProcessArtifacts.wsdl: Generated
WSDL interface declaration for the BPEL workflow model.

XML schema declaration included in the generated WSDL file This XSD gets in-
cluded into the generated WSDL file. The type specifications given here are manually
edited.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!--
3 ReSCUe-IT Secure Supply Chain WSDL Interface Type Schema
4 Included by the generated file SupplyChainProcessArtifacts.wsdl.
5 Author: Jens Gulden
6 -->
7

8 <schema xmlns="http://www.w3.org/2001/XMLSchema"
9 attributeFormDefault="unqualified" elementFormDefault="qualified"

10 targetNamespace="http://rescueit.org/platform/RescueitSupplyChainProcess">
11

12 <element name="RescueitAlert">
13 <complexType>
14 <sequence>
15 <element name="goodID" type="string"/>
16 <element name="timestamp" type="long"/>
17 <element name="type" type="string"/>
18 <element name="value" type="string"/>
19 <element name="message" type="string"/>
20 <element name="configuration" type="string"/>
21 </sequence>
22 </complexType>
23 </element>
24

25 <element name="physicalStepReached">
26 <complexType>
27 <sequence>
28 <element name="goodID" type="string" />
29 <element name="stepID" type="string" />
30 <element name="fluxnb" type="string" />
31 <element name="statusCode" type="string" />

308



32 <element name="statusDescription" type="string" />
33 <element name="location" type="string" />
34 <element name="latitude" type="double" />
35 <element name="longitude" type="double" />
36 </sequence>
37 </complexType>
38 </element>
39 <element name="physicalStepHasBeenReachedResponse">
40 <complexType>
41 <sequence>
42 <element name="out" type="string" />
43 </sequence>
44 </complexType>
45 </element>
46

47 <element name="secureTrackingAlert">
48 <complexType>
49 <sequence>
50 <element name="goodID" type="string" />

. . .

org.rescueit.modeling.workflow/example/SupplyChainProcessSchema.xsd: Manually
edited XML schema declaration included in the generated WSDL file.

Convert cardinality specifications from EMF meta-models to constraint expressions
in the Check language Using the cardinalitiesToConstraints.xpt trans-
formation, the automatically derived CHECK scripts checkEMConstraints.chk (see
Appendix A.3.1), checkMappingConstraints.chk (see Appendix A.3.2), and
scripts for architecture-specific implementation strategy models are generated. The speci-
fied transformation converts cardinality specifications from EMF meta-models to a set of
constraint expressions in the CHECK language. Since expressions of the CHECK language
are executed by the underlying modeling transformation mechanism, one may speak of the
cardinalitiesToConstraints.xpt transformation as a higher-order transforma-
tion, which outputs another yet to be executed model transformation/validity check script
for performing model checks.

1 «REM»
2 cardinalitiesToConstraints.xpt, code generation templates for generating constraint
3 expressions in the Check language from cardinality specifications in EMF meta-
4 models.
5 Written by Jens Gulden, jens.gulden@uni-due.de.
6 Licensed under a Creative Commons Attribution 3.0 Unported license.
7 «ENDREM»
8

9 «IMPORT ecore»
10

11 «EXTENSION common»
12

13 «REM»
14 *
15 * Generate file header.
16 *
17 «ENDREM»
18 «DEFINE header FOR Object-»
19 /* Generated file, generator written by Jens Gulden, jens.gulden@uni-due.de.
20 Licensed under a Creative Commons Attribution 3.0 Unported license. */
21 «ENDDEFINE»

309



22

23 «REM»
24 *
25 * Generate check script from eem meta model.
26 *
27 «ENDREM»
28 «DEFINE transformEem FOR EPackage»
29 «FILE "checkEMConstraints.chk"-»
30 «EXPAND header»
31

32 import eem;
33 «EXPAND transform»
34 «ENDFILE»
35 «ENDDEFINE»
36

37 «REM»
38 *
39 * Generate check script from mapping meta model.
40 *
41 «ENDREM»
42 «DEFINE transformMapping FOR EPackage»
43 «FILE "checkMappingConstraints.chk"-»
44 «EXPAND header»
45

46 import mapping;
47 «EXPAND transform»
48 «ENDFILE»
49 «ENDDEFINE»

. . .

de.gulden.modeling.seem.generator/templates/cardinalitiesToConstraints.xpt: Code
generation declaration to convert cardinality specifications from EMF meta-models to
constraint expressions in the CHECK language.

Invocation script to run the cardinalitiesToConstraints.xpt transforma-
tion This MWE script executes the cardinalitiesToConstraints.xpt from
within the tooling environment.

1 <!--
2 run-cardinalitiesToConstraints.mwe, invocation script to run the
3 cardinalitiesToConstraints.xpt transformation.
4 Written by Jens Gulden, jens.gulden@uni-due.de.
5 Licensed under a Creative Commons Attribution 3.0 Unported license.
6 -->
7

8 <workflow>
9

10 <!--
11 Workflow script for running the cardinalities-to-constraints transformation,
12 which converts cardinality information in Ecore meta-models to model constraints
13 in the Check language (related to the Xtend language).
14 -->
15

16 <!-- Base directory. -->
17 <property name="home" value="/home/user"/>
18

19 <!-- Templates directory. -->
20 <property name="templates" value="${home}/runtime-memocenter/de.gulden.modeling.

seem.generator/templates"/>
21

310



22 <!-- Eem meta-model. -->
23 <property name="metamodelEem" value="${home}/runtime-memocenter/de.gulden.

modeling.seem.eem/model/eem.ecore"/>
24

25 <!-- Mapping meta-model. -->
26 <property name="metamodelMapping" value="${home}/runtime-memocenter/de.gulden.

modeling.seem.mapping/model/mapping.ecore"/>
27

28 <!-- Web architecture meta-model. -->
29 <property name="metamodelWeb" value="${home}/runtime-memocenter/de.gulden.

modeling.seem.architecture.web/model/web.ecore"/>
30

31 <!-- BPEL architecture meta-model. -->
32 <property name="metamodelBPEL" value="${home}/runtime-memocenter/org.rescueit.

modeling.targetarchitecture/model/bpelProcess.ecore"/>
33

34 <!-- SOA architecture meta-model. -->
35 <property name="metamodelSOA" value="${home}/runtime-memocenter/org.rescueit.

modeling.targetarchitecture/model/soa.ecore"/>
36

37 <!-- Read the Eem meta-model. -->
38 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
39 <modelFile value="${metamodelEem}"/>
40 <outputSlot value="model"/>
41 </component>
42

43 <!-- Run transformation for the Eem meta-model. -->
44 <component class="org.eclipse.xpand2.Generator">
45 <fileEncoding value="ISO-8859-1"/>
46 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
47 <metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/>
48 </metaModel>
49 <outlet path="${templates}"/>

. . .

de.gulden.modeling.seem.generator/templates/run-cardinalitiesToConstraints.mwe:
Invocation script to run the higher-order cardinalitiesToConstraints.xpt
transformation.

311



Glossary

Application programming interface (API) A set of functions to be called by software
components. APIs are either provided by infrastructural components such as the
operation system, or by applications as a basis to interface to and extend existing
functionality. An abstract API, which does not provide concrete functionality to use,
but declares concepts such as abstract classes and interfaces to build software upon,
may also be offered by theoretical work such as the description of an engineering
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 34, 72, 93, 161, 231

Binary large object (BLOB) Binary large objects represent the most general notion of
a data object with unspecified semantics. To work with BLOBs means for a software
component to handle any kind of data, without being capable to interpret it, i. e., it
can merely store and retrieve that data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 198

Business Process Execution Language (BPEL) A modeling language for expressing
automatized business processes. BPEL has primarily been developed to provide a
common standard for input data to configure workflow execution engines, and to de-
couple the workflow engine configuration mechanism from a modeling perspective.
19, 37, 53, 79, 114, 163, 214

Business process model (BPM) Business process models are graphical or textual lan-
guage artifacts, which represent some aspects of dynamic behavior in an organiza-
tion. They are domain-specific models with specific semantics for conceptually
expressing knowledge about organizational scenarios. Business process models
usually integrate multiple perspectives on an organization, by allowing to interlink
multiple model perspectives about involved actors, used resources, related strategic
goals, performance indicators, etc. Due to this interlinking function, BPMs form the
central modeling perspective in domain-specific organization modeling. 19, 37, 53,
64, 110, 162, 247

Business process modeling language (BPML) A domain-specific modeling language
for expressing the behavior of multiple actors and resources during the execution
of a business process instance. Typical concepts offered by BPMLs are process-
steps, events, parallel execution branches and synchronizers, and alternative deci-
sion branches and joins. To be suited for enterprise modeling, a BPML should be
capable of referencing actor concepts and resource descriptions, to provide sufficient
semantics. When a BPML is capable of interlinking to actor concepts and resource
concepts from other domain-specific modeling language perspectives, it can be part
of a set of interrelated multi-perspective EMLs. . . . . . . . . . . . . . . . . . . . . . . 19, 70, 110

Business Process Modeling Notation (BPMN) A graphical language for visually ex-
pressing BPMs. The current version 2.0 of the language offers a rich set of modeling
elements with technical detail semantics, which allow to express implementation-
near design decisions about automatic execution of the modeled processes. In this
sense, the BPMN is not solely a conceptual business process modeling language,

312



but mixes elements for describing implementation details into the language. Dis-
cussions about using BPEL as underlying formal semantic representation for BPMN
underline the close relationship of BPMN to implementation concepts. . 19, 54, 79,
245

Commercial off-the-shelf (COTS) The class of commercial off-the-shelf software ap-
plications denotes software packages with a generic purpose and a broad range of
applicability, such as word processors, e-mail clients, or web-browsers. Because
these tools serve generic purposes without the need to be adapted to specific con-
textual conditions of their use, they can be produced by a small number of major
vendors, and be mass-distributed to a large number of users. . . . . . . . . . . . . . . . 19, 32

Common Objects Request Broker Architecture (CORBA) A conceptualization of
a central management system for distributed environments, which makes multiple
distributed and heterogeneous clients interoperable through an adaptable mechanism
of a common data type system, and a common way to invoke remote functionality.
19, 146

Computation independent model (CIM) A model that expresses incidents without re-
lation to representation in a computer system, or operation by an automatic process-
ing technology. Domain-specific organization models are computation independent
models (CIMs).

(Also: Computer Integrated Manufacturing, which denotes production processes of
physical goods, in which software is used to control production machines.) . 19, 31,
74, 311

Computer numerical control (CNC) Traditional term for software-programmable
production machines for physical goods. Typical machines of this type are autom-
atized drilling or sawing devices, forming raw material according to programmed
procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 83

Data definition language (DDL) A formal language to specify data types and structures
to be stored in a database. Typically, relational databases use language components
of Structured Query Language (SQL) as DDL, which basically are the CREATE
DATABASE and CREATE TABLE statements, together with corresponding state-
ments for modifying existing data definitions, and for deleting them. . . . . . . . . . . 19,
319

Database management system (DBMS) A software component either run locally on
a client platform for local data storage purposes, or run centrally on a server ac-
cessed by multiple client with potentially concurrent accesses. The DBMS receives
SQL statements and interprets and executes them. Besides correctly interpreting
SQL, DBMSs typically are designed to perform highly efficient data storage and
access, and allow for synchronizing concurrent accesses from multiple clients in
a distributed environment to operate concurrently without semantic defects (e. g.,
phantoms, orphans) due to parallel accesses to data. . . . . . . . . . . . . . . . . . . . . . 19, 257

313



Domain-specific modeling (DSM) Creating models about incidents in specific domains
with a modeling language that is especially suited for this domain. Since the mod-
eling language and the incident to be modeled are closely related to each other,
creating a new modeling language with suitable language constructs is often part of
DSM projects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 77, 109, 312

Domain-specific modeling language (DSML) A modeling language, which has espe-
cially been created to create models that describe specific incidents of a domain.
To do so efficiently, the language is made up of language constructs, which provide
a formal reconstruction of the natural language elements used by human experts to
describe the domain. Traditional domain-specific modeling (DSM) methods suggest
to create a new DSML for each domain-specific development, to be able to reach a
maximum of problem-adequate representation in domain-specific models. Together
with the development of a DSML, typically code generation templates, or other arti-
fact generation mechanisms, are developed, which allow for transformation content
in domain-specific model instances to technical artifact representations. . 19, 34, 73,
312

Domain-specific software engineering (DSSE) Software engineering projects, which
apply DSM techniques, including the development of a domain-specific modeling
language (DSML), creation of domain-specific models, and corresponding artifacts
generation mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 34, 73, 76, 97, 231

Eclipse Modeling Framework (EMF) A technology framework that extends the
ECLIPSE platform by a set of software components and accompanied APIs for han-
dling models. The EMF contains the ECORE modeling language to build meta-
models that describe modeling languages. These meta-models can subsequently be
used as the basis to derive model editors for the specified modeling language via
code generation features, which are integrated into EMF. Besides the core EMF fea-
tures, additional components are available to further extend the platform, e. g., the
GMF (see there). Both frameworks are sometimes subsumed under the general term
EMF in the course of this work, where a detailed distinctions of the individual com-
ponents is not required. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 51, 101, 216, 235,
255

Enhanced Backus-Naur Form (EBNF) Wide-spread grammar for specifying formal
textual languages. Combining terminal and non-terminal symbols, the EBNF pro-
vides a recursive description scheme, which, e. g., is frequently used to describe the
syntax of programming language constructs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 120

Enterprise architecture (EA) Conceptualization of the relationships between involved
actors, resource and processes in an organization. An EA can be specified in an
formal modeling language, e. g. EMLs, or using informal textual description means.
19, 27, 79

Enterprise information system (EIS) A software system to support collaborative tasks
in an organization. An EIS provides internal functionality, and integrates external

314



components, to form an organization-specific integrated information system. Busi-
ness companies, non-profit organizations or governmental institutions are organiza-
tions using EISs.
The identical acronym sometimes is used to refer to the term “executive information
system”. While an executive information system may be an integrated component in
an overall enterprise information system, the term “enterprise information system”
denotes a broader notion of EIS, as it is used throughout this work.1, 19, 29, 60, 93,
161, 230, 253

Enterprise model (EM) Domain-specific models, which express knowledge about the
processes performed in an organization, the actors and resources involved, organi-
zational and operational responsibility, as well as strategic aspects of an organiza-
tion. EM may be purely CIMs, if they restrain to expressing conceptual statements
about the organization, or may integrate references to technical concepts to bridge
between conceptual organization descriptions and implementation approaches. As
informal means of communication, EM foster a common understanding among mul-
tiple human modelers about the same objects of interest with regard to the modeled
organization. Extending these informal semantics, EM can also be the basis for a en-
terprise model-driven software engineering (EMDSE) process to develop software
applications for the organization. . . . . . . . . . . . . . . . . 1, 19, 27, 67, 79, 87, 97, 98, 245

Enterprise model-driven software engineering (EMDSE) A class of software engi-
neering approaches, in which EMs are the starting point for a software development
process. The method then makes proposition about how to interpret the EMs to
derive technical artifacts from them. This interpretation process may be supported
with automatic means, or may solely be described by the method on an abstract
level. The SEEM method, which is elaborated throughout this work, is an EMDSE
method with a high degree of automation. . . . . . . . . . . . . . . . . . . . . . . 19, 34, 118, 313

Enterprise modeling environment (EME) A software application, or combination of
multiple applications, which supports in creating, editing, and managing enterprise
model instances. An EME typically comes with a set of model editors, and func-
tionality for managing persisted model artifacts, and possibly interchange them with
other users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 87, 254

Enterprise modeling language (EML) A domain-specific language, or a family of
interrelated languages, used to describe incidents in an organization. To allow for
efficiently describing these incidents, an EML at least incorporates language ele-
ment types for involved actors, resources, process-steps and events, and rules of the
dynamic behavior of an organizations. These conceptualizations may be enriched
by, e. g., strategic description elements or coarse-grained value-chain categoriza-
tions. EMLs sometimes are defined as a set of interrelated perspectives, specified
by multiple interrelated modeling languages. For this reason, in the course of this
work, the singular and the plural form of the term can be used interchangeably in
most parts describing the method. . . . . . . . . . . . . . . . . . . . . . . . . 19, 26, 27, 61, 92, 245

Enterprise service bus (ESB) A component in a SOA, which bundles multiple services
from possible heterogeneous sources to reflect them by a standardized interface, and

315



make them available at a single entry point at the ESB. An ESB typically does not
provide business functionality by its own, but combines a set of tooling services that
allow to interface to existing services, allow to expose their functionality via stan-
dardized interfaces, and allow access control and secure communication techniques
to be set up in front of the exposed service functionalities. . . . . . . . . . . . . . . . . 20, 214

Event-driven process chain (EPC) A widely used business process modeling language
consisting primarily of the concepts of events and actions. The languages enforces a
strictly alternating order between events and actions, meaning that no process mod-
els are allowed, which would result in runtime instances with two actions following
each other consecutively, or two events, which follow each other directly. The EPC
language has been introduced with the ARIS method [Sch02b], and corresponding
tooling support is available with the software packages supporting this method. .19,
82

Extensible Markup Language (XML) A class of formal languages, the members
of which are composed according to a common meta-meta-model consisting of
the meta-types element, attribute and nesting relationships. Syntactically, XML
instances are expressed as textual documents, in which element instances and their
attributes appear as tags of the form <element-name attribute-name-
1=attribute-value-1 attribute-name-2=attribute-value-2
...> ...</element-name>. Nested child elements appear in between the
starting tag <element-name ...> and the closing tag </element-name>.
21, 42, 47, 85, 218

Extensible Stylesheet Language Transformations (XSLT) A language for describing
a transformation type that transforms an XML document instance into another. The
XSLT language itself also is formulated in an XML syntax. . . . . . . . . . . . . . . .21, 292

Extracted enterprise model (EEM) A model type introduced for the developed engi-
neering method, which contains all relevant concepts of a set of original enterprise
models required for further augmentation with architectural design decisions and
implementation details. It can automatically be derived from original enterprise
models using a horizontal model-to-model adapter transformation. . 19, 43, 92, 119,
131, 189, 223

General purpose modeling language (GPML) A modeling language that aims at pro-
viding language constructs, which are abstract enough to not be bound to a specific
context of a modeled domain. Yet, the constructs are intended to be useful for
any modeling project in any context. The abstractions offered by such languages
mostly resemble basic ontological concepts, such as classes, attributes, relationship,
etc. The best known representative of GPMLs is the Unified Modeling Language
(UML). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20, 73, 74, 235

Graphical Modeling Framework (GMF) A technology framework that extends the
EMF framework on top of the ECLIPSE platform by a set of software components

316



and accompanied APIs for describing graphical diagram languages and correspond-
ing model editors. In parallel to the EMF, the GMF also provides code generation
facilities to generatively create diagram editors that get integrated on the ECLIPSE
platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 255

Graphical user interface (GUI) A set of graphical accessibility components (“wid-
gets”), implemented as part of a software application, for a human user to interact
with the software system. . . . . . . . . . . . . . . . . . . . . 20, 39, 60, 114, 161, 165, 213, 249

Hyper-Text Transfer Protocol (HTTP) Communication protocol for data communi-
cation on the application level, which is typically used for data transfer between
web-browser clients and web-application servers in a distributed client-server web
application architecture. In its basic functionality, HTTP allows a web-browser to
identify electronic resources on a server and to issue requests for getting them. As
corresponding responses from a web-server, the identified resources are returned.
By convention, parameters can be attached to requests, which can dynamically be
evaluated by the web-server, resulting in a returned resource which has specifically
been generated as a response to the parametrized request. Using this mechanisms,
interactive software applications can be created, which get used through a web-
browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20,
226

Information systems science (ISS) An area of science which deals with questions
about effective and efficient development and use of computers and software for
specific purposes. ISS creates and reflects about artifacts of IT. . . . . . . . . . . . 20, 315

Information technology (IT) Computer and software artifacts which realize concepts
of information systems science (ISS). . . . . . . . . . . . . . . . . . . . . . . . . 20, 30, 54, 73, 214

Integrated development environment (IDE) A software application for end-users,
typically with a rich set of GUI functionality, for supporting software development
related tasks. Typical target end-users of IDEs are software architects and develop-
ers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 84,
235

Internet Protocol (IP) The standard for routing data through the internet. A central
conceptual introduction by IP is the use of 32 bit encoded node addresses (IP ad-
dresses notated in the form aa.bb.cc.dd) in version 4 of IP, and 128 bit wide addresses
in version 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 214

Java Server Pages (JSP) A technology to build and deploy web applications using the
JAVA programming language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 37, 140, 226

MEMO Meta-Modeling Language (MML) The meta-modeling language, which is
part of the MEMO enterprise modeling method. Using the MML, domain-specific
modeling languages can be defined, and corresponding model editors can be gener-
ated, which allow to create and edit model instances in these languages. . . . 20, 100,
241

317



Model-Driven Architecture (MDA) A methodical approach authored by the Object
Management Group (OMG) to develop software with the help of general purpose
modeling languages. Central to the approach is the distinction between CIMs, plat-
form independent models (PIMs) and platform specific models (PSMs). The method
describes a methodical procedure which guides developers from creating CIMs over
creating PIMs to creating PSMs. When all required levels of abstraction are de-
scribed with models, code generation techniques are applied to generate deployable
software artifacts from the models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20, 34, 74

Model-driven development (MDD) Synonym to model-driven software engineering
(MDSE). The term MDD is had been used a method trademark by the OMG until
2004, but today generically references a class of software development procedures,
which make use of modeling techniques to derive software in a defined transforma-
tion procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 73,
317

Model-driven software engineering (MDSE) A term denoting the class of engineering
methods which make use of modeling techniques to describe features of the software
system to be developed, as well as of code generation approaches to formally define
a projection from models into deployable software artifacts. . . . . . . . 20, 49, 73, 316

Modeling Workflow Engine (MWE) An interpreter mechanism which can be freely
configured to execute sequences of automatic operations on models. Possible opera-
tions are, e. g., model-to-model transformations, validity checks or code generation
steps. The MWE is part of supplementary modeling technology packages for the
EMF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 225

Multi-Perspective Enterprise Modeling (MEMO) An enterprise modeling method
developed by Prof. ULRICH FRANK [Fra94, Fra02, Fra11d, Fra12], which incorpo-
rates a semantically interlinked set of modeling languages. Model instances in these
languages provide a multi-perspective view on the socio-technical action systems of
organizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 27, 52, 80, 137, 255

Object Management Group (OMG) A standardization organization, which, among
others, is responsible for issuing modeling-related development standards, e. g.,
BPMN, UML, XML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 74, 316

Object request broker (ORB) A central coordinating software component in a dis-
tributed, heterogeneous environment, which serves to translate between syntacti-
cally incomaptible interfaces of heterogeneous components that are to be semanti-
cally integrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20,
62

Open Services Gateway initiative (OSGi) The OSGi Alliance, formerly Open Ser-
vices Gateway initiative, has specified an architectural approach for building soft-
ware applications as a set of loosely coupled components, which are loaded into a
common hub platform to form a common software application. A famous example

318



representative of a software application build on top of such an OSGi platform is the
ECLIPSE platform, with its mostly used application as IDE. . . . . . . . . . . . . . . 20, 235

Peer-to-peer (P2P) General type of a distributed system architecture with multiple in-
volved clients, which autonomously communicate among each other to achieve the
goals of common system functionality. A P2P system is characterized by not using a
centralized communication hub for interacting among client nodes. However, parts
of common system functionality may be centralized, e. g., client authentication and
authorization mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 164

Platform independent model (PIM) A model which describes a software system’s
architectural design, without referencing details about the technical implementation
of deployable artifacts. These details can be specified independently using PSMs.
As a consequence, a PIM can be the basis for multiple different technical realizations
on different target architecture platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 74, 316

Platform specific model (PSM) A software model which incorporates fine grained
technological details about the implementation of a deployable artifact. As part
of a model-driven development (MDD) approach, PSMs, together with PIMs and
CIMs, contain all information required to apply code generation techniques which
transform the models to deployable software artifacts. . . . . . . . . . . . . . . . . 20, 74, 316

Process-aware information system (PAIS) An information system, which focuses on
global processes combining individual tasks, rather than offering functionality for
executing individual tasks. More fine-grained functionality for executing individual
steps is expected to be available via external application or by imported components.
By describing software systems in terms of there processes, their declaration gets
aligned to descriptions of contextual real-world circumstances of the organizations
for which PAISs are to be developed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 84

Process-centered software engineering environment (PCSEE) A software develop-
ment tool or a set of tools which make use of process descriptions to create ex-
ecutable software artifacts. Typically, such an environment operates with process
models, either by interpreting them or transforming them, to associate modeled busi-
ness functionality in process models, with executable software functionality. . . . 20,
84

Production planning and control (PPC) Software systems, which are categorized as
PPC applications, provide integrated functionality for administrative planning of
production processes, as well as machine control to perform physical production
processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 83

Rational Unified Process (RUP) A method for software development, which is com-
bined from multiple individual pieces of methodical approaches. The RUP aims at
unifying these individual origins into one comprehensive method, which covers all
phases in the software development life-cycle. The efforts for creating RUP origi-
nate in the same motivation as creating the UML, and have been carried out by the

319



same key authors. In this sense, RUP complements the static set of languages sug-
gested by the UML with a procedural framework of how the languages in the UML
are to be applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 75, 253

Role-based access control (RBAC) An authorization mechanism in multi-user soft-
ware systems, which makes use of the central notion of roles to control access to
resources. By both associating user accounts with roles, and specifying allowed
roles for accessing resources, the concept of a role forms a suitable abstraction to
formulate complex constellations of access-rights. . . . . . . . . . . . . . . . . . . . . . . . . 21, 83

Service oriented architecture (SOA) An approach for building possibly distributed
software system, which focuses primarily on a clean an generally applicable def-
inition of interfaces and communication patterns between multiple software com-
ponents. The primary abstraction for describing an outer view on a software com-
ponent’s functionality is the service concept, which gets further dub-divided into
interfaces and operations, and corresponding type descriptions for input and output
data of operations. SOA describes a general notion of how to build large-scaled
software systems, the application of SOA development methods can lead to diverse
methodical procedures and created artifacts in the result. To formally describe the
services and interfaces in a SOA, the WSDL is typically used.21, 36, 140, 165, 214

Simple Object Access Protocol (SOAP) A technology for remotely passing data be-
tween software components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 53,
64

Software Engineering with Enterprise Models (SEEM) The methodical software en-
gineering procedure developed in this work, which makes use of EMs as domain
description means, and applies enhanced DSSE techniques to guide the creation of
software from enterprise models. . . . . . . . . . . . . . . . . . . 2, 21, 28, 50, 67, 94, 165, 211

Strategic Alignment Model (SAM) A technique for conceptualizing relationships be-
tween long-term business strategies, and corresponding strategic management of
IT. Mutual influences of either kinds of strategic decision making on each other are
taken into account by the approach. For practical application, the model can be used
as a managerial tool to support elaborating possible long-term orientated strategies.
21, 84

Structured Query Language (SQL) A formal language for describing extraction of
data from a relation database, or insertion of data into such a database. A database
is understood as a collection of tables with named columns and typically uniquely
identifiable row entries in each table. SQL contains language constructs both for
managing the structure of databases and the tables they contain (this subset of the
language is called data definition language (DDL), see there), as well as constructs
for filling, querying and deleting content from the tables. The statements formulated
in SQL are interpreted and executed by a DBMS, which typically receives SQL
commands via network from potentially multiple concurrent clients. . . . . . . .21, 311

320



Unified Modeling Language (UML) A set of GPMLs that are intended to offer com-
prehensive semantic means to express all aspects of a software system required to
apply MDD techniques. The UML contains languages to model static system struc-
tures, which are the commonly known class diagram language, and the package
diagram language as well as the component diagram language. Dynamic aspects of
behavior can be modeled either with the activity diagram language, sequence dia-
grams or state machine models, and a static decomposition of a system’s functions
can be expressed by interaction diagrams and use-case models. Newer versions of
the UML contain further languages. . . . . . . . . . . . . . . . . .21, 28, 52, 67, 141, 170, 314

Uniform resource identifier (URI) A string value, which uniquely identifies an elec-
tronic resource, to make it distinguishable and accessible among other electronic re-
sources. URIs start with a scheme identifier, which denotes how a following string
encodes information about the resource. URIs may be structured hierarchically, with
“/” characters separating levels of hierarchy in the resource identification. Depend-
ing on the scheme used, the information encoded in the URI may be consulted to
actually retrieve the denote resource, e. g., when URIs make use of the http://-
scheme to denote resource that can be downloaded via the internet. . . . . . . . 21, 146,
200

Web Services Description Language (WSDL) A formal language to describe services,
interfaces, operations and their parameters of participating software components in
a SOA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 218

Workflow management system (WfMS) A software system for coordinating process
executions, usually involving multiple human and technical actors. . . . 21, 114, 134,
170

Workflow model (WfM) A formal description of procedural steps in a process, which
can be parsed and executed by a workflow engine. A workflow model contains tech-
nical detail information about how to invoke software functionality in each workflow
step, and how to continue with the workflow after a workflow step has finished. 21,
53

World Wide Web (WWW) A client-server application infrastructure in the internet for
ubiquitous, multi-purpose data exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 315

XML Metadata Interchange (XMI) An XML dialect for serializing model instances,
conforming to specified meta-models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 281

XML Process Definition Language (XPDL) A workflow description language for de-
scribing executable process types. Using a corresponding workflow engine as an
interpreter, process descriptions given in XPDL can be executed like any program
in a programming language. Recent versions of the XPDL standard provide the
entire semantics as it is introduced by the visual BPMN modeling standard, which
makes XPDL the primary semantic underpinning for BPMN. . . . . . . . . . . . . . . 21, 80

321



XML Schema Definition (XSD) An XML dialect for specifying XML document types.
XSD comes with a large set of built-in base types, and provides sophisticated mech-
anism to specify complex XML document types based on this type system. Having
an XSD at hand, an XML document instance can be validated against it, to test
whether it conforms to the syntax by the schema. XSD is an XML dialect itself,
which means the language could be recursively applied to describe its own declara-
tion syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 42, 146,
305

322



References

[Act] Activiti Development Team. Activiti BPM Platform. http://www.activiti.
org/.

[AG08] João Paulo A. Almeida and Giancarlo Guizzardi. A Semantic Foundation for Role-
Related Concepts in Enterprise Modelling. In V. Tosic, K. M. Goeshka, A. van
Moorsel, and R. Wong, editors, Enterprise Distributed Object Computing Confer-
ence, 2008. EDOC ’08. 12th International IEEE, 2008.

[ANT] ANTLR Project. ANTLR Parser Generator. http://www.antlr.org/.

[Apaa] Apache Software Foundation. Apache Subversion. Open source version control
system. http://subversion.apache.org/.

[Apab] Apache Software Foundation. Apache Tomcat. Open source implementation of
the Java Servlet and JavaServer Pages technologies. http://tomcat.apache.
org/.

[BAPC08] Salah Baïna1, Pierre-Yves Ansias, Michaël Petit, and Annick Castiaux. Strategic
Business/IT Alignment using Goal Models. In Proceedings of the Third International
Workshop on Business/IT Alignment and Interoperability (BUSITAL’08), 2008.

[Bau99] Phillipe Baumard. Tacit Knowledge in Organizations. Sage Publications, London,
1999.

[BBR11] Stephan Buchwald, Thomas Bauer, and Manfred Reichert. Bridging the Gap Be-
tween Business Process Models and Service Composition Specifications, pages 124–
153. IGI Global, Hershey, 2011.

[BD09] Paul Beynon-Davies. Business Information Systems. Palgrave, Basingstoke, 2009.

[BD10] Bernd Bruegge and Allen H. Dutoit. Object-oriented software engineering: using
UML, patterns, and Java. Prentice Hall, Upper Saddle River, 2010.

[BDG+00] Michael Brundage, Patrick Dengler, Jeff Gabriel, Andy Hoskinson, Michael Kay,
Thomas Maxwell, Marcelo Ochoa, Johnny Papa, and Mohan Vanmane. Professional
XML Databases. Wrox Press, Indianapolis, 2000.

[Ber94] John Berge. The EDIFACT Standards. Blackwell, Oxford, 2nd edition, 1994.

[Ber03] Hans Bergsten. Java Server Pages. O’Reilly, Sebastopol, CA, 3rd edition, 2003.

[BFV+11] Thomas Barth, Thomas Fielenbach, Pedro G. Villanueva, Mohamed Bourimi, and
Dogan Kesdogan. Supporting Distributed Decision Making Using Secure Distributed
User Interfaces. In Proceedings of Distributed User Interfaces CHI Workshop, 2011.

[BJR99] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language
Reference Manual. Addison-Wesley, Reading, MA, 1999.

[BLW96] Sjaak Brinkkemper, Kalle Lyytinen, and Richard J. Welke. Method engineering:
principles of method construction and tool support. In Proceedings of the IFIP TC8,
WG8.1/8.2 Working Conference on Method Engineering, Berlin, 1996. Springer.

[Bon] BonitaSoft. Bonita Open Solution – Open Source Business Process Management and
Workflow Software. http://www.bonitasoft.com/.

323

http://www.activiti.org/
http://www.activiti.org/
http://www.antlr.org/
http://subversion.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.bonitasoft.com/


[CE00] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming. Addison-
Wesley, Reading, MA, 2000.

[cL] casewise Ltd. Corporate Modeler Suite. http://www.casewise.com/
Products/CorporateModelerSuite/.

[CR08] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-ins.
Addison-Wesley Longman, Amsterdam, 2008.

[CSW08] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling: A Founda-
tion For Language Driven Development. Ceteva, 2nd edition, 2008.

[Daf09] Richard L. Daft. Organization Theory and Design. South-Western College Publish-
ing, Cincinatti, Ohio, 10th edition, 2009.

[DBLV09] Pete Deemer, Gabrielle Benefield, Craig Larman, and Bas Vodde. The Scrum Primer,
2009. http://scrumfoundation.com/library.

[DDnHS99] Weimin Du, Jim Davis, Yan nong Huang, and Ming-Chien Shan. Enterprise Work-
flow Resource Management. Technical Report HPL-1999-8, Software Technology
Laboratory HP Laboratories, Palo Alto, 1999.

[Dia10] Michel Diaz, editor. Petri Nets: Fundamental Models, Verification and Applications.
John Wiley & Sons, Hoboken (NJ), 2010.

[Dub03] Micah Dubinko. XForms Essentials. O’Reilly, Sebastopol, CA, 2003.

[DvdA04] Juliane Dehnert and Wil M. P. van der Aalst. Bridging the gap between business
models and workflow specifications. International Journal of Cooperative Informa-
tion Systems, 13(3):289–323, 2004.

[DvdAtH05] Marlon Dumas, Wil M. P. van der Aalst, and Arthur H. ter Hofstede. Process-Aware
Information Systems: Bridging People and Software Through Process Technology.
Wiley, Hoboken, NJ, 2005.

[Ecla] Eclipse Foundation. Eclipse Modeling Framework (EMF). http://www.
eclipse.org/modeling/emf/.

[Eclb] Eclipse Foundation. Eclipse Platform. http://www.eclipse.org/.

[Eclc] Eclipse Foundation. Xpand – statically typed template language. http://www.
eclipse.org/modeling/m2t/?project=xpand.

[Ecld] Eclipse Foundation. Xtext - Language Development Framework. http://www.
eclipse.org/Xtext/.

[Erl06] Thomas Erl. Service-oriented Architecture: Concepts, Technology, and Desing. Pear-
son Education, Upper Saddle River, NJ, 2006.

[FC08] Joaquim Filipe and José Cordiero, editors. Enterprise Information Systems,
Berlin/Heidelberg, 2008. Springer. 10th International Conference ICEIS 2008,
Barcelona, Spain, June 2008.

[FFK+11] Dirk Fahland, Cédric Favre, Jana Koehler, Niels Lohmann, Hagen Völzer, and
Karsten Wolf. Analysis on Demand: Instantaneous Soundness Checking of Industrial
Business Process Models. Data & Knowledge Engineering, 70(5):448–466, 2011.

324

http://www.casewise.com/Products/CorporateModelerSuite/
http://www.casewise.com/Products/CorporateModelerSuite/
http://scrumfoundation.com/library
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/


[FHK+09] Ulrich Frank, David Heise, Heiko Kattenstroth, Donald Ferguson, Ethan Hadar, and
Marvin Waschke. ITML: A Domain-Specific Modeling Language for Supporting
Business Driven IT Management. In Juha-Pekka Tolvanen, Matti Rossi, J. Gray, and
J. Sprinkle, editors, Proceedings of the 9th OOPSLA workshop on domain-specific
modeling (DSM), Helsinki, 2009.

[FKC07] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role Based Access Control.
Artech House, London, Boston, 2nd edition, 2007.

[Fra94] Ulrich Frank. MEMO: A Tool Supported Methodology for Analyzing and
(Re-)Designing Business Information Systems. In R. Ege, M. Singh, and B. Meyer,
editors, Technology of Object-Oriented Languages and Systems, pages 367–380, Up-
per Saddle River, 1994. Prentice Hall.

[Fra02] Ulrich Frank. Multi-Perspective Enterprise Modeling (MEMO) – Conceptual Frame-
work and Modeling Languages. In Proceedings of the Hawaii International Confer-
ence on System Sciences (HICSS-35), page 72, Honolulu, 2002.

[Fra06] Ulrich Frank. Towards a Pluralistic Conception of Research Methods in Informa-
tion Systems Research. Technical Report 7, ICB Institute for Computer Science
and Business Information Systems, University of Duisburg-Essen, Essen, December
2006.

[Fra08] Ulrich Frank. The MEMO Meta Modelling Language. Technical Report 24, ICB
Institute for Computer Science and Business Information Systems, University of
Duisburg-Essen, Essen, 2008.

[Fra10] Ulrich Frank. Outline of a Method for Designing Domain-Specific Modelling Lan-
guages. Technical Report 39, ICB Institute for Computer Science and Business In-
formation Systems, University of Duisburg-Essen, Essen, May 2010.

[Fra11a] Ulrich Frank. MEMO Organisation Modelling Language 1: Focus on Organisational
Structure. Technical Report 48, ICB Institute for Computer Science and Business
Information Systems, University of Duisburg-Essen, Essen, December 2011.

[Fra11b] Ulrich Frank. MEMO Organisation Modelling Language 2: Focus on Business Pro-
cesses. Technical Report 49, ICB Institute for Computer Science and Business In-
formation Systems, University of Duisburg-Essen, Essen, December 2011.

[Fra11c] Ulrich Frank. MEMO Organisation Modelling Language OrgML Requirements
and Core Diagram Types. Technical Report 47, ICB Institute for Computer Science
and Business Information Systems, University of Duisburg-Essen, Essen, December
2011.

[Fra11d] Ulrich Frank. Multi-Perspective Enterprise Modelling: Background and Terminolog-
ical Foundation. Technical Report 46, ICB Institute for Computer Science and Busi-
ness Information Systems, University of Duisburg-Essen, Essen, December 2011.

[Fra12] Ulrich Frank. Multi-perspective enterprise modeling: foundational concepts,
prospects and future research challenges. Software and Systems Modeling, August
2012.

[FS09] Ulrich Frank and Stefan Strecker. Beyond ERP Systems: An Outline of Self-
Referential Enterprise Systems. Technical Report 31, ICB Institute for Computer
Science and Business Information Systems, University of Duisburg-Essen, Essen,
April 2009.

325



[GBKK12] Jens Gulden, Thomas Barth, Dogan Kesdogan, and Fatih Karatas. Erhöhung
der Sicherheit von Lebensmittelwarenketten durch Modell-getriebene Prozess-
Implementierung. In Dirk Christian Mattfeld and Susanne Robra-Bissantz, ed-
itors, Tagungsband der Multikonferenz Wirtschaftsinformatik 2012, pages 2061–
2072, Berlin, 2012. GITO Verlag.

[GF10] Jens Gulden and Ulrich Frank. MEMOCenterNG – A full-featured modeling envi-
ronment for organisation modeling and model-driven software development. In Pnina
Soffer and Erik Proper, editors, Proceedings of the CAiSE Forum 2010 Hammamet,
Tunisia, June 9-11, 2010, volume 592 of CEUR Workshop Proceedings, pages 76–
83. CEUR, 2010. ISSN 1613-0073.

[GH09] Wim Van Grembergen and Steven De Haes. Enterprise Governance of IT: Achieving
Strategic Alignment and Value. Springer, New York, 2009.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley Longman, Ams-
terdam, 1994.

[GL06] Volker Gruhn and Ralf Laue. Complexity Metrics for Business Process Models.
In 9th International Conference on Business Information Systems (BIS 2006), vol-
ume 85 of Lecture Notes in Informatics (LNI), pages 1–12, 2006.

[GPZ11] Constantinos Giannoulis, Michaël Petit, and Jelena Zdravkovic. Modeling
Competition-Driven Business Strategy for Business IT Alignment. In Camille Sali-
nesi and Oscar Pastor, editors, Advanced Information Systems Engineering Work-
shops, pages 16–28, Berlin Heidelberg, 2011. Springer.

[Gro04] The Open Group. TOGAF – The Open Group Architecture Framework. Version 8.1
“Enterprise Edition”, 2004.

[Gro09a] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley Longman, Amsterdam, 2009.

[Gro09b] The Open Group. SOA Reference Architecture, 2009.

[Gru02] Volker Gruhn. Process-centered software engineering environments. A brief history
and future challenges. Annals of Software Engineering, 14(1–4):363–382, 2002.

[Gul09] Jens Gulden. Minimal invasive generative Entwicklung von Modellierungswerkzeu-
gen. In S. Fischer, E. Maehle, and R. Reischuk, editors, Tagungsband der Konferenz
INFORMATIK 2009, Lübeck, 28.9.2009 - 2.10.2009, 2009.

[HC06] Mary Jo Hatch and Ann L. Cunliffe. Organization Theory: Modern, Symbolic, and
Postmodern Perspectives. Oxford University Press, Oxford, 2nd edition, 2006.

[HMP04] Alan R. Hevner, Salvatore T. March, and Jinsoo Park. Design Science in Information
Systems Research. MIS Quarterly, 28(1):75–105, March 2004.

[Hum48] David Hume. An Enquiry Concerning Human Understanding. A. Millar, London,
1748.

[HV93] John C. Henderson and N. Venkatraman. Strategic Alignment: Leveraging Informa-
tion Technology for Transforming Organizations. IBM Systems Journal, 32(1):4–16,
1993.

[Ini11] Business Process Management Initiative. Business Process Modeling Notation 2.0
(BPMN 2.0), 2011.

326



[JBo11] JBoss Community team. jBPM – Business Process Management (BPM) Suite, 2011.
http://www.jboss.org/jbpm.

[JC04] Jinyoung Jang and Yongsun Choi. Web Service Based Universal Management of
Workflow Resources. In Proceedings of the Fourth International Conference on
Electronic Business (ICEB2004), Beijing, 2004.

[JJM09] Manfred A. Jeusfeld, Matthias Jarke, and John Mylopoulos, editors. Metamodeling
for Method Engineering. MIT Press, Cambridge, 2009.

[Jun04] Jürgen Jung. Mapping of Business Process Models to Workflow Schemata – an Ex-
ample using MEMO-OrgML and XPDL. Technical Report 47, Universität Koblenz-
Landau, Koblenz, April 2004.

[Jun07] Jürgen Jung. Entwurf einer Sprache für die Modellierung von Ressourcen im Kontext
der Geschäftsprozessmodellierung. PhD thesis, Universität Duisburg-Essen, Berlin,
2007.

[Kle08] A. Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, Reading, 2008.

[Köh12] Christian Alexander Köhling. Entwurf einer konzeptuellen Modellierungsmethode
zur Unterstützung rationaler Zielplanungsprozesse in Unternehmen. PhD thesis,
Universität Duisburg-Essen, Essen, 2012.

[Kro07] John Krogstie. Modelling of the People, by the People, for the People, pages 305–
318. Springer, Berlin Heidelberg, 2007.

[Kru03] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley,
Upper Saddle River, 3rd edition, 2003.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain Specific Modeling: enabling full
code-generation. Wiley, 2008.

[Lan09] Marc Lankhorst. Enterprise Architecture at Work - Modelling, Communication and
Analysis. Springer, Berlin Heidelberg, 2009.

[LHM90] James R. Lewis, Suzanne C. Henry, and Robert L. Mack. Integrated Office Soft-
ware Benchmarks: A Case Study. In D. Diaper et al., editors, INTERACT ’90 –
Proceedings of the IFIP TC13 Third Interational Conference on Human-Computer
Interaction, Amsterdam, 1990. Elsevier Science Publishers B.V.

[LKT04] Janne Luoma, Steven Kelly, and Juha-Pekka Tolvanen. Defining Domain-Specific
Modeling Languages: Collected Experiences. In Proceedings of the 4th OOPSLA
Workshop on Domain-Specific Modeling (DSM04), 2004.

[LPW+09] Martin Op’t Land, Erik Proper, Maarten Waage, Jeroen Cloo, and Claudia Steghuis.
Enterprise Architecture. Springer, Berlin Heidelberg, 2009.

[Mar00] Chris Marshall. Enterprise Modeling With UML: Designing Successful Software
Through Business Analysis. Addison-Wesley Professional, Boston, 2000.

[Men06] Jan Mendling. Business Process Execution Language for Web Service (BPEL).
EMISA Forum, 26(2):5–8, 2006.

327

http://www.jboss.org/jbpm


[MLZ08] Jan Mendling, Kristian Bisgaard Lassen, and Uwe Zdun. On the Transformation of
Control Flow between Block-Oriented and Graph-Oriented Process Modeling Lan-
guages. International Journal of Business Process Integration and Management
(IJBPIM). Special Issue on Model-Driven Engineering of Executable Business Pro-
cess Models, 3(2):96–108, 2008.

[MS11] Ganna Monakova and Andreas Schaad. Visualizing security in business processes.
In SACMAT ’11 Proceedings of the 16th ACM symposium on Access control models
and technologies, pages 147–148, New York, 2011. ACM.

[MVM10] Frederic P. Miller, Agnes F. Vandome, and John McBrewster, editors. Extended
Backus-Naur Form. Alphascript Publishing, Beau Bassin, 2010.

[NS73] I. Nassi and B. Shneiderman. Flowchart Techniques for Structured Programming.
ACM SIGPLAN Notices, 8:12–26, August 1973.

[NS07] Kioumars Namiri and Nenad Stojanovic. Using Control Patterns in Business Pro-
cesses Compliance. 4832, pages 178–190, 2007.

[OAS07] OASIS Web Services Business Process Execution Language (WSBPEL) Techni-
cal Committee. Web Services Business Process Execution Language Version 2.0,
2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.html.

[Obj03] Object Management Group. MDA Guide Version 1.0.1, 2003. http://www.omg.
org/mda.

[Obj08] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transfor-
mation Specification, 2008. http://www.omg.org/spec/QVT/1.0/PDF.

[ODvdA+09] Chung Ouyang, Marlon Dumas, Wil M. P. van der Aalst, Arthur H. ter Hofstede,
and Jan Mendling. From Business Process Models to Process-oriented Software
Systems. ACM Transactions on Software Engineering and Methodology (TOSEM),
19(1):1–37, 2009.

[Org10a] Organization for the Advancement of Structured Information Standards (OASIS).
Web Services – Human Task (WS-HumanTask) Specification Version 1.1, 2010.
http://docs.oasis-open.org/bpel4people/ws-humantask-1.
1.html.

[Org10b] Organization for the Advancement of Structured Information Standards (OASIS).
WS-BPEL Extension for People (BPEL4People) Specification Version 1.1, 2010.
http://docs.oasis-open.org/bpel4people/bpel4people-1.
1-spec-cs-01.pdf.

[PHB06] Alexander Pretschner, Manuel Hilty, and David Basin. Distributed usage control.
Communications of the ACM - Privacy and security in highly dynamic systems, 49,
2006.

[Put88] Hilary Putnam. Representation and Reality. MIT Press, Cambridge, Mass., 1988.

[PW09] Neil Pollock and Robin Williams. Software and Organisations: The Biography of
the Enterprise-wide System Or How Sap Conquered the World. Taylor & Francis,
Florence, Kentucky, 2009.

[Ras97] Lars Rasmusson. Decentralized Coordination for Open Distributed Systems. Tech-
nical report, SICS Intelligent Systems Laboratory, 1997.

328

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/mda
http://www.omg.org/mda
http://www.omg.org/spec/QVT/1.0/PDF
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cs-01.pdf
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cs-01.pdf


[Rat01] Rational Software. Rational Unified Process Best Practices for Software Develop-
ment Teams, 2001.

[RDB+08] Julian Reichwald, Tim Dörnemann, Thomas Barth, Manfred Grauer, and Bernd
Freisleben. Model-Driven Process Development Incorporating Human Tasks in
Service-Oriented Grid Environments. In Martin Bichler, Thomas Hess, Helmut Kr-
cmar, Ulrike Lechner, Florian Matthes, Arnold Picot, Benjamin Speitkamp, and Pe-
tra Wolf, editors, Multikonferenz Wirtschaftsinformatik 2008, pages 79–90, Berlin,
2008. GITO-Verlag.

[Res] Research Group for Information Systems and Enterprise Modeling, Prof. Dr. Ulrich
Frank. MEMOCenterNG. http://www.wi-inf.uni-duisburg-essen.
de/FGFrank/index.php?lang=de&&groupId=1&&contentType=
Project&&projId=19.

[RG03] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
Mcgraw-Hill Professional, New York, 3rd edition, 2003.

[Rit07] Peter Rittgen. Enterprise Modeling And Computing With UML. Idea Group Inc.
(IGI), Hershey, PA, 2007.

[RM06] Jan Recker and Jan Mendling. On the Translation between BPMN and BPEL: Con-
ceptual Mismatch between Process Modeling Languages. In Thibaud Latour and
Michael Petit, editors, CAiSE 2006 Workshop Proceedings - Eleventh International
Workshop on Exploring Modeling Methods in Systems Analysis and Design (EMM-
SAD 2006), pages 521–532, 2006.

[RMB01] William A. Ruh, Francis X. Maginnis, and William J. Brown. Enterprise Application
Integration. Wiley, Hoboken, NJ, 2001.

[RMvdAR06] Jan Recker, Jan Mendling, Wil M. P. van der Aalst, and Michael Rosemann. Model-
Driven Enterprise Systems Configuration. In E. Dubois and K. Pohl, editors, Pro-
ceedings of the 18th Conference on Advanced Information Systems Engineering
(CAiSE 2006), number 4001 in Lecture Notes in Computer Science Volume, pages
369–383, Luxembourg, 2006. Springer.

[Rol00] Asbjørn Rolstadås. Enterprise Modeling: Improving Global Industrial Competitive-
ness. Kluwer Academic Publishers, Dordrecht, 2000.

[Rüc11] Bernd Rücker. Activiti 5 Open Source BPM, 2011. Invited talk on 2011-10-07 at
Technical University Berlin, as part of the conference INFORMATIK 2011.

[RvdA07] Nick Russell and Wil M.P. van der Aalst. Evaluation of the BPEL4People and WS-
HumanTask Extensions to WS-BPEL 2.0 using the Workflow Resource Patterns.
Technical Report BPM-07-11, BPMcenter.org, 2007.

[RvL11] Tijs Rademakers and Ron van Liempd. Activiti in Action. Manning, Greenwich,
2011.

[SAP07] SAP. SAP Standardized Technical Architecture Modeling (SAP-TAM), 2007.

[SBPM09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. Eclipse Mod-
eling Framework. Addison Wesley, Amsterdam, 2nd edition, 2009.

[Sch02a] Stephen R. Schach. Object-oriented and classical software engineering. McGraw-
Hill, New York, 2002.

329

http://www.wi-inf.uni-duisburg-essen.de/FGFrank/index.php?lang=de&&groupId=1&&contentType=Project&&projId=19
http://www.wi-inf.uni-duisburg-essen.de/FGFrank/index.php?lang=de&&groupId=1&&contentType=Project&&projId=19
http://www.wi-inf.uni-duisburg-essen.de/FGFrank/index.php?lang=de&&groupId=1&&contentType=Project&&projId=19


[Sch02b] August Wilhelm Scheer. ARIS – Vom Geschäftsprozess zum Anwendungssystem.
Springer, Berlin, 4th edition, 2002.

[SFHK11] Stefan Strecker, Ulrich Frank, David Heise, and Heiko Kattenstroth. MetricM: A
modeling method in support of the reflective design and use of performance mea-
surement systems. Information Systems and e-Business Management, 2011.

[SFK00] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The NIST Model for Role-Based
Access Control: Towards A Unified Standard. In Proceedings of the 5th ACM Work-
shop on Role Based Access Control, July 26-27, 2000, Berlin, pages 47–63, 2000.

[SK08] Ahmad K. Shuja and Jochen Krebs. IBM Rational Unified Process Reference and
Certification Guide. IBM Press, Upper Saddle River, 2008.

[SM06] Carlo Simon and Jan Mendling. Verification of Forbidden Behavior in EPCs. In
Heinrich C. Mayr and Ruth Brey, editors, Modellierung 2006, volume P-82 of Lec-
ture Notes in Informatics (LNI), pages 233–242, 2006.

[SN00] August-Wilhelm Scheer and Markus Nüttgens. ARIS Architecture and Reference
Models for Business Process Management. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, 2000.

[Sof] Software AG. Aris Toolset. http://aris.softwareag.com/.

[SS05] August-Wilhelm Scheer and Kristof Schneider. ARIS – Architecture of Integrated
Information Systems. In Peter Bernus, Kai Mertins, and Günter Schmidt, editors,
Handbook on Architectures of Information Systems, pages 605–623. Springer, Berlin,
Heidelberg, 2005.

[SSMB11] Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass. Detecting and
Resolving Conflicts of Mutual-Exclusion and Binding Constraints in a Business Pro-
cess Context. In 19th International Conference on Cooperative Information Systems
(CoopIS 2011), Crete, Greece, 2011.

[STH10] Lambert M. Surhone, Mariam T. Tennoe, and Susan F. Henssonow, editors. Bonita
Open Solution. Betascript Publishing, 2010.

[Tha00] Bernhard Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-
nology. Springer, Berlin Heidelberg, 2000.

[Tid01] Doug Tidwell. XSLT. O’Reilly Media, Sebastopol, 2001.

[TvS03] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems. Principles and
Paradigms. Prentice Hall, Upper Saddle River, 2003.

[vdAvH04] Wil M. P. van der Aalst and Kees Max van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, Cambridge (MA), 2004.

[vDMvdA06] B. F. van Dongen, Jan Mendling, and Wil M. P. van der Aalst. Structural Patterns
for Soundness of Business Process Models. In Proceedings of the Tenth IEEE In-
ternational Enterprise Computing Conference (EDOC 2006), October, 16-20, Hong
Kong, China, pages 116–128, Washington, D.C., 2006. IEEE Computer Society.

[vdV02] Eric van der Vlist. XML Schema. O’Reilly, Cambridge, 2002.

[Ver96] F. Vernadat. Enterprise Modeling and Integration: Principles and Applications.
Chapman & Hall, London, 1996.

330

http://aris.softwareag.com/


[Wal92] Jean-Baptiste Waldner. Principles of Computer-Integrated Manufacturing. Wiley,
Hoboken, NJ, 1992.

[Wes07] Mathias Weske. Business Process Management: Concepts, Languages, Architec-
tures. Springer, Berlin Heidelberg, 2007.

[WHM08a] Ingo Weber, Jörg Hoffmann, and Jan Mendling. Beyond soundness: On the semantic
consistency of executable process models. In ECOWS’08: Proceedings of the 6th
IEEE European Conference on Web Services, pages 102–111, 2008.

[WHM08b] Ingo Weber, Jörg Hoffmann, and Jan Mendling. Beyond Soundness: On the Veri-
fication of Semantic Business Process Models. Distributed and Parallel Databases
(DAPD), 27(3):271–343, 2008.

[WHMN07] Ingo Weber, Jörg Hoffmann, Jan Mendling, and Jörg Nitzsche. Towards a Methodol-
ogy for Semantic Business Process Modeling and Configuration. In Proc. of the 2nd
International SeMSoC Workshop on Business Oriented Aspects concerning Seman-
tics and Methodologies in Service-oriented Computing (SeMSoC 2007) at the 5th
International Conference on Service Oriented Computing (ICSOC 2007), Vienna,
2007.

[Win02] Robert Winter. Business Strategy Modelling in the Information Age. In Proceedings
of the 3rd international web conference, Perth, 2002.

[WMB+03] Rolf T. Wigand, Peter Mertens, Freimut Bodendorf, Wolfgang König, Arnold Picot,
and Matthias Schumann. Introduction to Business Information Systems. Springer,
Berlin, 2003.

[XSS+04] Steven Xia, David Sun, Chengzheng Sun, David Chen, and Haifeng Shen. Leverag-
ing single-user applications for multi-user collaboration. In CSCW ’04 Proceedings
of the 2004 ACM conference on Computer supported cooperative work, New York,
2004. ACM.

[Zac87] J. A. Zachman. A framework for information systems architecture. IBM Systems
Journal, 26(3):277–293, 1987.

[Zie10] Jörg Ziemann. Architecture of Interoperable Information Systems. Logos, Berlin,
2010.

[zM99] Michael zur Mühlen. Resource Modeling in Workflow Applications. In Jörg Becker,
Michael zur Mühlen, and Michael Rosemann, editors, Proceedings of the 1999 Work-
flow Management Conference (WFM99), pages 137–153, Münster, 1999.

[ZSZ11] Iyad Zikra, Janis Stirna, and Jelena Zdravkovic. Bringing Enterprise Modeling
Closer to Model-Driven Development. In The Practice of Enterprise Modeling, 4th
IFIP WG 8.1 Working Conference, PoEM 2011 Oslo, Norway, November 2-3, 2011
Proceedings, volume 92 of Lecture Notes in Business Information Processing, pages
268–282. Springer, 2011.

331



332



Visit http://www.seem-method.info/ to access updates and software resources
provided with this book.

333

http://www.seem-method.info/




λογος
Logos Verlag Berlin ISBN 978-3-8325-3536-0

This book elaborates a software development method for creating
information systems from enterprise models, to achieve a close
alignment between business processes, the structures of organizations,
and the functionality offered by information systems supporting the
organizations’ work. The method is designed as a generic framework to
work with any enterprise modeling language, and to generate software
for any target system platforms. Fundamental methodical challenges
in transforming conceptual models to implementation artifacts are
faced by involving auxiliary models into the software creation process,
and splitting up the transformation procedure into multiple dedicated
phases.

Using this approach, the abstraction gap between conceptual enterpri-
se models and technical implementation artifacts gets systematically
bridged by methodical concepts, in order to perform an ontological turn
from the bird’s-eye-view description perspective of enterprise models,
to an internal perspective describing technical details of a software
system.

Prototypical implementation examples for illustrating the introduced
concepts are included in the book and are available for download.
They demonstrate how to use the method with model-transformations,
validity checks, and domain-specific modeling languages inside an
Eclipse development environment.

Je
ns

G
ul

de
n

M
et

h
o

d
ic

al
S

u
p

p
o

rt
fo

r
M

o
d

el
-D

ri
ve

n
S

o
ft

w
ar

e
E

n
g

in
ee

ri
n

g
w

it
h

E
n

te
rp

ri
se

M
o

d
el

s Jens Gulden

Methodical Support
for Model-Driven
Software Engineering
with Enterprise Models


